Revisiting the first mean value theorem for integrals
The Teaching of Mathematics, XXV (2022) no. 1, p. 30

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We provide a proof of the first mean-value theorem for integrals using the Cauchy mean-value theorem, and give an interesting application of the mean-value theorem related to a Taylor remainder.
Classification : 97I50, I55
Keywords: mean value theorem, Taylor remainder.
@article{TM2_2022_XXV_1_a3,
     author = {Humberto Rafeiro and Sehjeong Kim},
     title = {Revisiting the first mean value theorem for integrals},
     journal = {The Teaching of Mathematics},
     pages = {30 },
     publisher = {mathdoc},
     volume = {XXV},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2022_XXV_1_a3/}
}
TY  - JOUR
AU  - Humberto Rafeiro
AU  - Sehjeong Kim
TI  - Revisiting the first mean value theorem for integrals
JO  - The Teaching of Mathematics
PY  - 2022
SP  - 30 
VL  - XXV
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2022_XXV_1_a3/
LA  - en
ID  - TM2_2022_XXV_1_a3
ER  - 
%0 Journal Article
%A Humberto Rafeiro
%A Sehjeong Kim
%T Revisiting the first mean value theorem for integrals
%J The Teaching of Mathematics
%D 2022
%P 30 
%V XXV
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2022_XXV_1_a3/
%G en
%F TM2_2022_XXV_1_a3
Humberto Rafeiro; Sehjeong Kim. Revisiting the first mean value theorem for integrals. The Teaching of Mathematics, XXV (2022) no. 1, p. 30 . http://geodesic.mathdoc.fr/item/TM2_2022_XXV_1_a3/