Revisiting the first mean value theorem for integrals
The Teaching of Mathematics, XXV (2022) no. 1, p. 30 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We provide a proof of the first mean-value theorem for integrals using the Cauchy mean-value theorem, and give an interesting application of the mean-value theorem related to a Taylor remainder.
Classification : 97I50, I55
Keywords: mean value theorem, Taylor remainder.
@article{TM2_2022_XXV_1_a3,
     author = {Humberto Rafeiro and Sehjeong Kim},
     title = {Revisiting the first mean value theorem for integrals},
     journal = {The Teaching of Mathematics},
     pages = {30 },
     publisher = {mathdoc},
     volume = {XXV},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2022_XXV_1_a3/}
}
TY  - JOUR
AU  - Humberto Rafeiro
AU  - Sehjeong Kim
TI  - Revisiting the first mean value theorem for integrals
JO  - The Teaching of Mathematics
PY  - 2022
SP  - 30 
VL  - XXV
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2022_XXV_1_a3/
LA  - en
ID  - TM2_2022_XXV_1_a3
ER  - 
%0 Journal Article
%A Humberto Rafeiro
%A Sehjeong Kim
%T Revisiting the first mean value theorem for integrals
%J The Teaching of Mathematics
%D 2022
%P 30 
%V XXV
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2022_XXV_1_a3/
%G en
%F TM2_2022_XXV_1_a3
Humberto Rafeiro; Sehjeong Kim. Revisiting the first mean value theorem for integrals. The Teaching of Mathematics, XXV (2022) no. 1, p. 30 . http://geodesic.mathdoc.fr/item/TM2_2022_XXV_1_a3/