Some approximations of the Euler number
The Teaching of Mathematics, XXIII (2020) no. 1, p. 51 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we find new approximations of the Euler number $e$ and using Matlab we compare the existing approximations and the new approximations by testing their convergence rate to the Euler number for some terms.
Classification : 97I30, I35
Keywords: number $e$, approximation, Carleman's inequality.
@article{TM2_2020_XXIII_1_a5,
     author = {Ilir Demiri and Shpetim Rexhepi},
     title = {Some approximations of the {Euler} number},
     journal = {The Teaching of Mathematics},
     pages = {51 },
     publisher = {mathdoc},
     volume = {XXIII},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2020_XXIII_1_a5/}
}
TY  - JOUR
AU  - Ilir Demiri
AU  - Shpetim Rexhepi
TI  - Some approximations of the Euler number
JO  - The Teaching of Mathematics
PY  - 2020
SP  - 51 
VL  - XXIII
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2020_XXIII_1_a5/
LA  - en
ID  - TM2_2020_XXIII_1_a5
ER  - 
%0 Journal Article
%A Ilir Demiri
%A Shpetim Rexhepi
%T Some approximations of the Euler number
%J The Teaching of Mathematics
%D 2020
%P 51 
%V XXIII
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2020_XXIII_1_a5/
%G en
%F TM2_2020_XXIII_1_a5
Ilir Demiri; Shpetim Rexhepi. Some approximations of the Euler number. The Teaching of Mathematics, XXIII (2020) no. 1, p. 51 . http://geodesic.mathdoc.fr/item/TM2_2020_XXIII_1_a5/