Bimatrix games have a quasi-strict equilibrium: an alternative proof through a heuristic approach
The Teaching of Mathematics, XXI (2018) no. 2, p. 97 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We present an alternative proof for the existence of at least one quasi-strict equilibrium in every bimatrix game. While Norde [Bimatrix games have quasi-strict equilibria. Math Prog, {85}, 35-49] uses Brouwer's fixed point theorem, we employ Kakutani's fixed point theorem for multivalued maps, and make our proof shorter, thus teachable in a couple of lecture talks. Besides our approach admits of natural economic interpretations of some technicalities used in the proof. We also explain how we get to our method of proof. In addition, it is remarked that it is possible to adopt a field more general than that of real numbers.
Classification : 97M40, 91A05, 91B62 M45
Keywords: bimatrix game, Kakutani fixed point theorem, multivalued map, quasi-strict equilibrium.
@article{TM2_2018_XXI_2_a3,
     author = {Takao Fujimoto and N. G. A. Karunathilake and Ravindra R. Ranade},
     title = {Bimatrix games have a quasi-strict equilibrium: an alternative proof through a heuristic approach},
     journal = {The Teaching of Mathematics},
     pages = {97 },
     publisher = {mathdoc},
     volume = {XXI},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2018_XXI_2_a3/}
}
TY  - JOUR
AU  - Takao Fujimoto
AU  - N. G. A. Karunathilake
AU  - Ravindra R. Ranade
TI  - Bimatrix games have a quasi-strict equilibrium: an alternative proof through a heuristic approach
JO  - The Teaching of Mathematics
PY  - 2018
SP  - 97 
VL  - XXI
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2018_XXI_2_a3/
LA  - en
ID  - TM2_2018_XXI_2_a3
ER  - 
%0 Journal Article
%A Takao Fujimoto
%A N. G. A. Karunathilake
%A Ravindra R. Ranade
%T Bimatrix games have a quasi-strict equilibrium: an alternative proof through a heuristic approach
%J The Teaching of Mathematics
%D 2018
%P 97 
%V XXI
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2018_XXI_2_a3/
%G en
%F TM2_2018_XXI_2_a3
Takao Fujimoto; N. G. A. Karunathilake; Ravindra R. Ranade. Bimatrix games have a quasi-strict equilibrium: an alternative proof through a heuristic approach. The Teaching of Mathematics, XXI (2018) no. 2, p. 97 . http://geodesic.mathdoc.fr/item/TM2_2018_XXI_2_a3/