An interpolation approach to $\zeta(2n)$
The Teaching of Mathematics, XX (2017) no. 1, p. 20 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We present a method to find approximately the values $\zeta(2n)$ of the Riemann zeta-function.
Classification : 97I30 I35
Keywords: Riemann $\zeta$-function, interpolation
@article{TM2_2017_XX_1_a2,
     author = {Samuel G. Moreno and Esther M. Garc{\'\i}a-Caballero},
     title = {An interpolation approach to $\zeta(2n)$},
     journal = {The Teaching of Mathematics},
     pages = {20 },
     publisher = {mathdoc},
     volume = {XX},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2017_XX_1_a2/}
}
TY  - JOUR
AU  - Samuel G. Moreno
AU  - Esther M. García-Caballero
TI  - An interpolation approach to $\zeta(2n)$
JO  - The Teaching of Mathematics
PY  - 2017
SP  - 20 
VL  - XX
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2017_XX_1_a2/
LA  - en
ID  - TM2_2017_XX_1_a2
ER  - 
%0 Journal Article
%A Samuel G. Moreno
%A Esther M. García-Caballero
%T An interpolation approach to $\zeta(2n)$
%J The Teaching of Mathematics
%D 2017
%P 20 
%V XX
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2017_XX_1_a2/
%G en
%F TM2_2017_XX_1_a2
Samuel G. Moreno; Esther M. García-Caballero. An interpolation approach to $\zeta(2n)$. The Teaching of Mathematics, XX (2017) no. 1, p. 20 . http://geodesic.mathdoc.fr/item/TM2_2017_XX_1_a2/