An interpolation approach to $\zeta(2n)$
The Teaching of Mathematics, XX (2017) no. 1, p. 20

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We present a method to find approximately the values $\zeta(2n)$ of the Riemann zeta-function.
Classification : 97I30 I35
Keywords: Riemann $\zeta$-function, interpolation
@article{TM2_2017_XX_1_a2,
     author = {Samuel G. Moreno and Esther M. Garc{\'\i}a-Caballero},
     title = {An interpolation approach to $\zeta(2n)$},
     journal = {The Teaching of Mathematics},
     pages = {20 },
     publisher = {mathdoc},
     volume = {XX},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2017_XX_1_a2/}
}
TY  - JOUR
AU  - Samuel G. Moreno
AU  - Esther M. García-Caballero
TI  - An interpolation approach to $\zeta(2n)$
JO  - The Teaching of Mathematics
PY  - 2017
SP  - 20 
VL  - XX
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2017_XX_1_a2/
LA  - en
ID  - TM2_2017_XX_1_a2
ER  - 
%0 Journal Article
%A Samuel G. Moreno
%A Esther M. García-Caballero
%T An interpolation approach to $\zeta(2n)$
%J The Teaching of Mathematics
%D 2017
%P 20 
%V XX
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2017_XX_1_a2/
%G en
%F TM2_2017_XX_1_a2
Samuel G. Moreno; Esther M. García-Caballero. An interpolation approach to $\zeta(2n)$. The Teaching of Mathematics, XX (2017) no. 1, p. 20 . http://geodesic.mathdoc.fr/item/TM2_2017_XX_1_a2/