A proof of method of cylindrical shells based on a generalized integral representation of additive interval function
The Teaching of Mathematics, XVII (2014) no. 1, p. 34
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we provide a generalized integral representation of additive interval function based on a fundamental integral representation of additive interval function given in Zorich's textbook, Mathematical Analysis, Vol I. Then we use it to give a rigorous proof of the method of cylindrical shells for the evaluation of volume of solid of revolution about vertical line.
Classification :
1MSC97I50 2MathEducI55
Keywords: Additive interval function, method of cylindrical shells, Riemann integrable function.
Keywords: Additive interval function, method of cylindrical shells, Riemann integrable function.
@article{TM2_2014_XVII_1_a2,
author = {Yuanhong Zhi and Yongkun Li},
title = {A proof of method of cylindrical shells based on a generalized integral representation of additive interval function},
journal = {The Teaching of Mathematics},
pages = {34 },
year = {2014},
volume = {XVII},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM2_2014_XVII_1_a2/}
}
TY - JOUR AU - Yuanhong Zhi AU - Yongkun Li TI - A proof of method of cylindrical shells based on a generalized integral representation of additive interval function JO - The Teaching of Mathematics PY - 2014 SP - 34 VL - XVII IS - 1 UR - http://geodesic.mathdoc.fr/item/TM2_2014_XVII_1_a2/ LA - en ID - TM2_2014_XVII_1_a2 ER -
%0 Journal Article %A Yuanhong Zhi %A Yongkun Li %T A proof of method of cylindrical shells based on a generalized integral representation of additive interval function %J The Teaching of Mathematics %D 2014 %P 34 %V XVII %N 1 %U http://geodesic.mathdoc.fr/item/TM2_2014_XVII_1_a2/ %G en %F TM2_2014_XVII_1_a2
Yuanhong Zhi; Yongkun Li. A proof of method of cylindrical shells based on a generalized integral representation of additive interval function. The Teaching of Mathematics, XVII (2014) no. 1, p. 34 . http://geodesic.mathdoc.fr/item/TM2_2014_XVII_1_a2/