A proof of method of cylindrical shells based on a generalized integral representation of additive interval function
The Teaching of Mathematics, XVII (2014) no. 1, p. 34
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we provide a generalized integral representation of additive interval function based on a fundamental integral representation of additive interval function given in Zorich's textbook, Mathematical Analysis, Vol I. Then we use it to give a rigorous proof of the method of cylindrical shells for the evaluation of volume of solid of revolution about vertical line.
Classification :
1MSC97I50 2MathEducI55
Keywords: Additive interval function, method of cylindrical shells, Riemann integrable function.
Keywords: Additive interval function, method of cylindrical shells, Riemann integrable function.
@article{TM2_2014_XVII_1_a2,
author = {Yuanhong Zhi and Yongkun Li},
title = {A proof of method of cylindrical shells based on a generalized integral representation of additive interval function},
journal = {The Teaching of Mathematics},
pages = {34 },
publisher = {mathdoc},
volume = {XVII},
number = {1},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM2_2014_XVII_1_a2/}
}
TY - JOUR AU - Yuanhong Zhi AU - Yongkun Li TI - A proof of method of cylindrical shells based on a generalized integral representation of additive interval function JO - The Teaching of Mathematics PY - 2014 SP - 34 VL - XVII IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM2_2014_XVII_1_a2/ LA - en ID - TM2_2014_XVII_1_a2 ER -
%0 Journal Article %A Yuanhong Zhi %A Yongkun Li %T A proof of method of cylindrical shells based on a generalized integral representation of additive interval function %J The Teaching of Mathematics %D 2014 %P 34 %V XVII %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM2_2014_XVII_1_a2/ %G en %F TM2_2014_XVII_1_a2
Yuanhong Zhi; Yongkun Li. A proof of method of cylindrical shells based on a generalized integral representation of additive interval function. The Teaching of Mathematics, XVII (2014) no. 1, p. 34 . http://geodesic.mathdoc.fr/item/TM2_2014_XVII_1_a2/