A proof of method of cylindrical shells based on a generalized integral representation of additive interval function
The Teaching of Mathematics, XVII (2014) no. 1, p. 34 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we provide a generalized integral representation of additive interval function based on a fundamental integral representation of additive interval function given in Zorich's textbook, Mathematical Analysis, Vol I. Then we use it to give a rigorous proof of the method of cylindrical shells for the evaluation of volume of solid of revolution about vertical line.
Classification : 1MSC97I50 2MathEducI55
Keywords: Additive interval function, method of cylindrical shells, Riemann integrable function.
@article{TM2_2014_XVII_1_a2,
     author = {Yuanhong Zhi and Yongkun Li},
     title = {A proof of method of cylindrical shells based on a generalized integral representation of additive interval function},
     journal = {The Teaching of Mathematics},
     pages = {34 },
     publisher = {mathdoc},
     volume = {XVII},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2014_XVII_1_a2/}
}
TY  - JOUR
AU  - Yuanhong Zhi
AU  - Yongkun Li
TI  - A proof of method of cylindrical shells based on a generalized integral representation of additive interval function
JO  - The Teaching of Mathematics
PY  - 2014
SP  - 34 
VL  - XVII
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2014_XVII_1_a2/
LA  - en
ID  - TM2_2014_XVII_1_a2
ER  - 
%0 Journal Article
%A Yuanhong Zhi
%A Yongkun Li
%T A proof of method of cylindrical shells based on a generalized integral representation of additive interval function
%J The Teaching of Mathematics
%D 2014
%P 34 
%V XVII
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2014_XVII_1_a2/
%G en
%F TM2_2014_XVII_1_a2
Yuanhong Zhi; Yongkun Li. A proof of method of cylindrical shells based on a generalized integral representation of additive interval function. The Teaching of Mathematics, XVII (2014) no. 1, p. 34 . http://geodesic.mathdoc.fr/item/TM2_2014_XVII_1_a2/