To be integer or not to be rational: that is the questio$\sqrt{N}$
The Teaching of Mathematics, XVI (2013) no. 2, p. 79
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Another proof is given of the fact that the square root of a nonnegative integer is either an integer or an irrational. Bibliography on this theme is presented.
Classification :
1MSC97F60 2MathEducF64
Keywords: Rational and irrational numbers.
Keywords: Rational and irrational numbers.
@article{TM2_2013_XVI_2_a2,
author = {Samuel G. Moreno and Esther M. Garc{\'\i}a-Caballero},
title = {To be integer or not to be rational: that is the questio$\sqrt{N}$},
journal = {The Teaching of Mathematics},
pages = {79 },
year = {2013},
volume = {XVI},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM2_2013_XVI_2_a2/}
}
Samuel G. Moreno; Esther M. García-Caballero. To be integer or not to be rational: that is the questio$\sqrt{N}$. The Teaching of Mathematics, XVI (2013) no. 2, p. 79 . http://geodesic.mathdoc.fr/item/TM2_2013_XVI_2_a2/