Definition of the definite integral
The Teaching of Mathematics, XVI (2013) no. 1, p. 29 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we suggest a new approach for a definition of definite integral of a real function in the first course in Mathematical Analysis. The definite integral exists if for any sequence of partitions, the upper sum and the lower sum of Darboux have the same limit. If the definite integral of a real function exists, then we can simply compute it, as a limit of a sequence of integral sums of Riemann.
Classification : 1AMS97I50 2ZDMI55
Keywords: Definite integral, upper and lower sum of Darboux, Riemann sum.
@article{TM2_2013_XVI_1_a5,
     author = {Nikita Shekutkovski},
     title = {Definition of the definite integral},
     journal = {The Teaching of Mathematics},
     pages = {29 },
     publisher = {mathdoc},
     volume = {XVI},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2013_XVI_1_a5/}
}
TY  - JOUR
AU  - Nikita Shekutkovski
TI  - Definition of the definite integral
JO  - The Teaching of Mathematics
PY  - 2013
SP  - 29 
VL  - XVI
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2013_XVI_1_a5/
LA  - en
ID  - TM2_2013_XVI_1_a5
ER  - 
%0 Journal Article
%A Nikita Shekutkovski
%T Definition of the definite integral
%J The Teaching of Mathematics
%D 2013
%P 29 
%V XVI
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2013_XVI_1_a5/
%G en
%F TM2_2013_XVI_1_a5
Nikita Shekutkovski. Definition of the definite integral. The Teaching of Mathematics, XVI (2013) no. 1, p. 29 . http://geodesic.mathdoc.fr/item/TM2_2013_XVI_1_a5/