The fundamental theorem on symmetric polynomials
The Teaching of Mathematics, XV (2012) no. 1, p. 55 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this work we are going to extend the proof of Newton's theorem of symmetric polynomials, by considering any monomial order $>$ on polynomials in $n$ variables $x_{1},x_{2},\dots,x_{n}$ over a field $k$, where the original proof is based on the graded lexicographic order. We will introduce some basic definitions and propositions to support the extended proof.
Classification : 1AMS97H20 2ZDMH25
Keywords: Symmetric polynomials.
@article{TM2_2012_XV_1_a4,
     author = {Hamza E. S. Daoub},
     title = {The fundamental theorem on symmetric polynomials},
     journal = {The Teaching of Mathematics},
     pages = {55 },
     publisher = {mathdoc},
     volume = {XV},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2012_XV_1_a4/}
}
TY  - JOUR
AU  - Hamza E. S. Daoub
TI  - The fundamental theorem on symmetric polynomials
JO  - The Teaching of Mathematics
PY  - 2012
SP  - 55 
VL  - XV
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2012_XV_1_a4/
LA  - en
ID  - TM2_2012_XV_1_a4
ER  - 
%0 Journal Article
%A Hamza E. S. Daoub
%T The fundamental theorem on symmetric polynomials
%J The Teaching of Mathematics
%D 2012
%P 55 
%V XV
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2012_XV_1_a4/
%G en
%F TM2_2012_XV_1_a4
Hamza E. S. Daoub. The fundamental theorem on symmetric polynomials. The Teaching of Mathematics, XV (2012) no. 1, p. 55 . http://geodesic.mathdoc.fr/item/TM2_2012_XV_1_a4/