A universal sequence of continuous functions
The Teaching of Mathematics, XIV (2011) no. 2, p. 71 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We show that for each positive integer $k$ there is a sequence $F_n:\Bbb{R}^k \rightarrow\Bbb{R}$ of {t continuous} functions which represents via point-wise limits {t arbitrary} functions $G\:X^k\rightarrow \Bbb{R}$ defined on domains $X\subseteq \Bbb{R}$ of sizes not exceeding a standard cardinal characteristic of the continuum.
Classification : 1AMS03E20 97E60 2ZDME65
Keywords: Point-wise limit, continuum, continuous function.
@article{TM2_2011_XIV_2_a1,
     author = {Stevo Todor\v{c}evi\'c},
     title = {A universal sequence of continuous functions},
     journal = {The Teaching of Mathematics},
     pages = {71 },
     publisher = {mathdoc},
     volume = {XIV},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2011_XIV_2_a1/}
}
TY  - JOUR
AU  - Stevo Todorčević
TI  - A universal sequence of continuous functions
JO  - The Teaching of Mathematics
PY  - 2011
SP  - 71 
VL  - XIV
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2011_XIV_2_a1/
LA  - en
ID  - TM2_2011_XIV_2_a1
ER  - 
%0 Journal Article
%A Stevo Todorčević
%T A universal sequence of continuous functions
%J The Teaching of Mathematics
%D 2011
%P 71 
%V XIV
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2011_XIV_2_a1/
%G en
%F TM2_2011_XIV_2_a1
Stevo Todorčević. A universal sequence of continuous functions. The Teaching of Mathematics, XIV (2011) no. 2, p. 71 . http://geodesic.mathdoc.fr/item/TM2_2011_XIV_2_a1/