A universal sequence of continuous functions
The Teaching of Mathematics, XIV (2011) no. 2, p. 71
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We show that for each positive integer $k$ there is a sequence $F_n:\Bbb{R}^k \rightarrow\Bbb{R}$ of {t continuous} functions which represents via point-wise limits {t arbitrary} functions $G\:X^k\rightarrow \Bbb{R}$ defined on domains $X\subseteq \Bbb{R}$ of sizes not exceeding a standard cardinal characteristic of the continuum.
Classification :
1AMS03E20 97E60 2ZDME65
Keywords: Point-wise limit, continuum, continuous function.
Keywords: Point-wise limit, continuum, continuous function.
@article{TM2_2011_XIV_2_a1,
author = {Stevo Todor\v{c}evi\'c},
title = {A universal sequence of continuous functions},
journal = {The Teaching of Mathematics},
pages = {71 },
year = {2011},
volume = {XIV},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM2_2011_XIV_2_a1/}
}
Stevo Todorčević. A universal sequence of continuous functions. The Teaching of Mathematics, XIV (2011) no. 2, p. 71 . http://geodesic.mathdoc.fr/item/TM2_2011_XIV_2_a1/