A universal sequence of continuous functions
The Teaching of Mathematics, XIV (2011) no. 2, p. 71

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We show that for each positive integer $k$ there is a sequence $F_n:\Bbb{R}^k \rightarrow\Bbb{R}$ of {t continuous} functions which represents via point-wise limits {t arbitrary} functions $G\:X^k\rightarrow \Bbb{R}$ defined on domains $X\subseteq \Bbb{R}$ of sizes not exceeding a standard cardinal characteristic of the continuum.
Classification : 1AMS03E20 97E60 2ZDME65
Keywords: Point-wise limit, continuum, continuous function.
@article{TM2_2011_XIV_2_a1,
     author = {Stevo Todor\v{c}evi\'c},
     title = {A universal sequence of continuous functions},
     journal = {The Teaching of Mathematics},
     pages = {71 },
     publisher = {mathdoc},
     volume = {XIV},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2011_XIV_2_a1/}
}
TY  - JOUR
AU  - Stevo Todorčević
TI  - A universal sequence of continuous functions
JO  - The Teaching of Mathematics
PY  - 2011
SP  - 71 
VL  - XIV
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2011_XIV_2_a1/
LA  - en
ID  - TM2_2011_XIV_2_a1
ER  - 
%0 Journal Article
%A Stevo Todorčević
%T A universal sequence of continuous functions
%J The Teaching of Mathematics
%D 2011
%P 71 
%V XIV
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2011_XIV_2_a1/
%G en
%F TM2_2011_XIV_2_a1
Stevo Todorčević. A universal sequence of continuous functions. The Teaching of Mathematics, XIV (2011) no. 2, p. 71 . http://geodesic.mathdoc.fr/item/TM2_2011_XIV_2_a1/