Zur Integration der Hyperbelfunktion
The Teaching of Mathematics, XIII (2010) no. 2, p. 93 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

This is about several ways how to integrate the hyperbola function (not using the chain rule). Some ways may be not so common. This article is not about new mathematical results, but focusses on several ways while always keeping in mind the students' perspective. From a purely mathematical point of view, the article could be read as proposing several alternatives on how to define $\exp(x)$ or $\ln(x)$, but this would not be the author's intention. He argues from the students' view, so this article is about several alternatives on how to obtain the area under the hyperbola function. At the end, the relation of $\ln 2$ to the harmonic series will be discussed.
Classification : 1AMS97I20 97I50 2ZDMI25 I55
Keywords: Hyperbola, integration.
@article{TM2_2010_XIII_2_a1,
     author = {J\"org Meyer},
     title = {Zur {Integration} der {Hyperbelfunktion}},
     journal = {The Teaching of Mathematics},
     pages = {93 },
     publisher = {mathdoc},
     volume = {XIII},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2010_XIII_2_a1/}
}
TY  - JOUR
AU  - Jörg Meyer
TI  - Zur Integration der Hyperbelfunktion
JO  - The Teaching of Mathematics
PY  - 2010
SP  - 93 
VL  - XIII
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2010_XIII_2_a1/
LA  - en
ID  - TM2_2010_XIII_2_a1
ER  - 
%0 Journal Article
%A Jörg Meyer
%T Zur Integration der Hyperbelfunktion
%J The Teaching of Mathematics
%D 2010
%P 93 
%V XIII
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2010_XIII_2_a1/
%G en
%F TM2_2010_XIII_2_a1
Jörg Meyer. Zur Integration der Hyperbelfunktion. The Teaching of Mathematics, XIII (2010) no. 2, p. 93 . http://geodesic.mathdoc.fr/item/TM2_2010_XIII_2_a1/