New close form approximations of $ln{(1+x)}$
The Teaching of Mathematics, XII (2009) no. 1, p. 7 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Based on Newton-Cotes and Gaussian quadrature rules, we develop several closed form approximations to $\ln{(1+x)}$. We also compare our formulae to the Taylor series expansion. Another objective of our work is to inspire students to formulate other better approximations by using the presented approach. Because of the level of mathematics, the presented work is easily embraceable in an undergraduate class.
Classification : 1AMS00A35 2ZDMN45
Keywords: Quadrature rules, closed form approximation, logarithm.
@article{TM2_2009_XII_1_a1,
     author = {Sanjay Kumar Khattri},
     title = {New close form approximations of $ln{(1+x)}$},
     journal = {The Teaching of Mathematics},
     pages = {7 },
     publisher = {mathdoc},
     volume = {XII},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2009_XII_1_a1/}
}
TY  - JOUR
AU  - Sanjay Kumar Khattri
TI  - New close form approximations of $ln{(1+x)}$
JO  - The Teaching of Mathematics
PY  - 2009
SP  - 7 
VL  - XII
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2009_XII_1_a1/
LA  - en
ID  - TM2_2009_XII_1_a1
ER  - 
%0 Journal Article
%A Sanjay Kumar Khattri
%T New close form approximations of $ln{(1+x)}$
%J The Teaching of Mathematics
%D 2009
%P 7 
%V XII
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2009_XII_1_a1/
%G en
%F TM2_2009_XII_1_a1
Sanjay Kumar Khattri. New close form approximations of $ln{(1+x)}$. The Teaching of Mathematics, XII (2009) no. 1, p. 7 . http://geodesic.mathdoc.fr/item/TM2_2009_XII_1_a1/