Solving sextics by division method
The Teaching of Mathematics, XI (2008) no. 2, p. 93 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A polynomial is said to be reducible over a given field if it can be factored into polynomials of lower degree with coefficients in that field; otherwise it is termed as an irreducible polynomial~[1]. This paper describes a simple division method to decompose a reducible sextic over the real field into a product of two polynomial factors, one quadratic and one quartic. The conditions on the coefficients of such reducible sextic are derived.
Classification : 00A35 H24
Keywords: Sextics, reducible polynomials, reducible sextic.
@article{TM2_2008_XI_2_a3,
     author = {Raghavendra G. Kulkarni},
     title = {Solving sextics by division method},
     journal = {The Teaching of Mathematics},
     pages = {93 },
     publisher = {mathdoc},
     volume = {XI},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2008_XI_2_a3/}
}
TY  - JOUR
AU  - Raghavendra G. Kulkarni
TI  - Solving sextics by division method
JO  - The Teaching of Mathematics
PY  - 2008
SP  - 93 
VL  - XI
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2008_XI_2_a3/
LA  - en
ID  - TM2_2008_XI_2_a3
ER  - 
%0 Journal Article
%A Raghavendra G. Kulkarni
%T Solving sextics by division method
%J The Teaching of Mathematics
%D 2008
%P 93 
%V XI
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2008_XI_2_a3/
%G en
%F TM2_2008_XI_2_a3
Raghavendra G. Kulkarni. Solving sextics by division method. The Teaching of Mathematics, XI (2008) no. 2, p. 93 . http://geodesic.mathdoc.fr/item/TM2_2008_XI_2_a3/