Solving sextics by division method
The Teaching of Mathematics, XI (2008) no. 2, p. 93

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A polynomial is said to be reducible over a given field if it can be factored into polynomials of lower degree with coefficients in that field; otherwise it is termed as an irreducible polynomial~[1]. This paper describes a simple division method to decompose a reducible sextic over the real field into a product of two polynomial factors, one quadratic and one quartic. The conditions on the coefficients of such reducible sextic are derived.
Classification : 00A35 H24
Keywords: Sextics, reducible polynomials, reducible sextic.
@article{TM2_2008_XI_2_a3,
     author = {Raghavendra G. Kulkarni},
     title = {Solving sextics by division method},
     journal = {The Teaching of Mathematics},
     pages = {93 },
     publisher = {mathdoc},
     volume = {XI},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2008_XI_2_a3/}
}
TY  - JOUR
AU  - Raghavendra G. Kulkarni
TI  - Solving sextics by division method
JO  - The Teaching of Mathematics
PY  - 2008
SP  - 93 
VL  - XI
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2008_XI_2_a3/
LA  - en
ID  - TM2_2008_XI_2_a3
ER  - 
%0 Journal Article
%A Raghavendra G. Kulkarni
%T Solving sextics by division method
%J The Teaching of Mathematics
%D 2008
%P 93 
%V XI
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2008_XI_2_a3/
%G en
%F TM2_2008_XI_2_a3
Raghavendra G. Kulkarni. Solving sextics by division method. The Teaching of Mathematics, XI (2008) no. 2, p. 93 . http://geodesic.mathdoc.fr/item/TM2_2008_XI_2_a3/