Why is it not true that 0.999 ... 1 ?
The Teaching of Mathematics, XI (2008) no. 1, p. 35 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The contribution describes three basic obstacles preventing students from understanding the concept of infinite series in teaching of mathematics and provides means to their removal.
Classification : 00A35 D70
Keywords: Infinite series, obstacle, limit of a sequence, potential and actual perception of the infinite limit process, the relation of phylogenesis and ontogenesis.
@article{TM2_2008_XI_1_a3,
     author = {Petr Eisenmann},
     title = {Why is it not true that 0.999 ... < 1 ?},
     journal = {The Teaching of Mathematics},
     pages = {35 },
     publisher = {mathdoc},
     volume = {XI},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2008_XI_1_a3/}
}
TY  - JOUR
AU  - Petr Eisenmann
TI  - Why is it not true that 0.999 ... < 1 ?
JO  - The Teaching of Mathematics
PY  - 2008
SP  - 35 
VL  - XI
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2008_XI_1_a3/
LA  - en
ID  - TM2_2008_XI_1_a3
ER  - 
%0 Journal Article
%A Petr Eisenmann
%T Why is it not true that 0.999 ... < 1 ?
%J The Teaching of Mathematics
%D 2008
%P 35 
%V XI
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2008_XI_1_a3/
%G en
%F TM2_2008_XI_1_a3
Petr Eisenmann. Why is it not true that 0.999 ... < 1 ?. The Teaching of Mathematics, XI (2008) no. 1, p. 35 . http://geodesic.mathdoc.fr/item/TM2_2008_XI_1_a3/