Projections of the twisted cubic
The Teaching of Mathematics, X (2007) no. 1, p. 51 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

One gets every cubic curve with rational parametrization by projecting the curve with general point $(t\mid t^2\mid t^3)$ in different ways onto planes. This result shows the power of elementary methods.
Classification : 00A35 G75
Keywords: Parabola, space curves, twisted cubics, orthographic projection, divergent parabolas, trident curve.
@article{TM2_2007_X_1_a3,
     author = {Joerg Meyer},
     title = {Projections of the twisted cubic},
     journal = {The Teaching of Mathematics},
     pages = {51 },
     publisher = {mathdoc},
     volume = {X},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2007_X_1_a3/}
}
TY  - JOUR
AU  - Joerg Meyer
TI  - Projections of the twisted cubic
JO  - The Teaching of Mathematics
PY  - 2007
SP  - 51 
VL  - X
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2007_X_1_a3/
LA  - en
ID  - TM2_2007_X_1_a3
ER  - 
%0 Journal Article
%A Joerg Meyer
%T Projections of the twisted cubic
%J The Teaching of Mathematics
%D 2007
%P 51 
%V X
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2007_X_1_a3/
%G en
%F TM2_2007_X_1_a3
Joerg Meyer. Projections of the twisted cubic. The Teaching of Mathematics, X (2007) no. 1, p. 51 . http://geodesic.mathdoc.fr/item/TM2_2007_X_1_a3/