Mots-clés : large gradients, error estimation.
@article{TIMM_2024_30_4_a8,
author = {A. I. Zadorin},
title = {Analysis of numerical differentiation formulas on a uniform grid in the presence of a boundary layer},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {106--116},
year = {2024},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a8/}
}
TY - JOUR AU - A. I. Zadorin TI - Analysis of numerical differentiation formulas on a uniform grid in the presence of a boundary layer JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 106 EP - 116 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a8/ LA - ru ID - TIMM_2024_30_4_a8 ER -
A. I. Zadorin. Analysis of numerical differentiation formulas on a uniform grid in the presence of a boundary layer. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 106-116. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a8/
[1] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M., Chislennye metody, Nauka, M., 1987, 598 pp. | MR
[2] Zadorin A.I., Zadorin N.A., “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Sib. Electron. Math. Rep., 9 (2012), 445–455 | MR | Zbl
[3] Ilin A.M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Mat. zametki, 6:2 (1969), 237–248 | Zbl
[4] Kellogg R.B., Tsan A., “Analysis of some difference approximations for a singular perturbation problems without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | MR | Zbl
[5] Zadorin A.I., Zadorin N.A., “Nepolinomialnaya interpolyatsiya funktsii s bolshimi gradientami i ee primenenie”, Zhurn. vychisl. matematiki i mat. fiziki, 61:2 (2021), 179–188 | DOI | MR | Zbl
[6] Zadorin A.I., “Formuly chislennogo differentsirovaniya funktsii s bolshimi gradientami”, Sib. zhurn. vychisl. matematiki, 26:1 (2023), 17–26 | DOI | Zbl
[7] Zadorin A.I., “Analiz formul chislennogo differentsirovaniya na setke Shishkina pri nalichii pogranichnogo sloya”, Sib. zhurn. vychisl. matematiki, 21:3 (2018), 243–254 | DOI | Zbl
[8] Shishkin G.I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992, 233 pp.
[9] Zadorin A.I., “Analiz formul chislennogo differentsirovaniya na setke Bakhvalova pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matematiki i mat. fiziki, 63:2 (2023), 218–226 | DOI | Zbl
[10] Bakhvalov N.S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matematiki i mat. fiziki, 9:4 (1969), 841–890
[11] Roos H.G., Layer-adapted meshes: milestones in 50 years of history, Preprint, 2019, 16 pp., arXiv: 1909.08273
[12] Vulanović R., “On a numerical solution of a power layer problem”, Proc. III Conf. on Numerical Methods and Approximation Theory, ed. G.V. Milovanovoć, University of Niš, 1988, 423–431 | MR
[13] Dautov R.Z., Timerbaev M.R., Chislennye metody. Priblizhenie funktsii, uch. pos., Izd-vo Kazan. un-ta, Kazan, 2021, 122 pp.
[14] Kopteva N.V., Stynes M., “Approximation of derivatives in a convection-diffusion two-point boundary value problem”, Appl. Numer. Math., 39 (2001), 47–60 | DOI | MR | Zbl
[15] Shishkin G.I., “Approximations of solutions and derivatives for a singularly perturbed elliptic convection-diffusion equations”, Math. Proc. Royal Irish Acad., 103A:4 (2003), 169–201 | DOI | MR | Zbl