Analysis of numerical differentiation formulas on a uniform grid in the presence of a boundary layer
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 106-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The issue of numerical differentiation of functions with large gradients is considered. It is assumed that there is a decomposition of a given function of one variable into the sum of a regular component and a boundary layer component; the latter is responsible for the large gradients of the function and is known up to a factor. This decomposition is valid, in particular, for a solution of a singularly perturbed boundary value problem. However, the application of the classical polynomial formulas of numerical differentiation to functions with large gradients may produce significant errors. Numerical differentiation formulas that are exact on the boundary layer component are studied, and their error is estimated. Such formulas are proved to be more exact than the classical ones in the case of the presence of a boundary layer component. An approach to estimating the error of the proposed formulas is suggested, and its applicability is shown in particular cases. The results of numerical experiments are presented. These results comply with the obtained error estimates and show the advantage in accuracy of the proposed formulas.
Keywords: function of one variable, boundary layer component, nonpolynomial formula for numerical differentiation
Mots-clés : large gradients, error estimation.
@article{TIMM_2024_30_4_a8,
     author = {A. I. Zadorin},
     title = {Analysis of numerical differentiation formulas on a uniform grid in the presence of a boundary layer},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {106--116},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a8/}
}
TY  - JOUR
AU  - A. I. Zadorin
TI  - Analysis of numerical differentiation formulas on a uniform grid in the presence of a boundary layer
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 106
EP  - 116
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a8/
LA  - ru
ID  - TIMM_2024_30_4_a8
ER  - 
%0 Journal Article
%A A. I. Zadorin
%T Analysis of numerical differentiation formulas on a uniform grid in the presence of a boundary layer
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 106-116
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a8/
%G ru
%F TIMM_2024_30_4_a8
A. I. Zadorin. Analysis of numerical differentiation formulas on a uniform grid in the presence of a boundary layer. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 106-116. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a8/

[1] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M., Chislennye metody, Nauka, M., 1987, 598 pp. | MR

[2] Zadorin A.I., Zadorin N.A., “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Sib. Electron. Math. Rep., 9 (2012), 445–455 | MR | Zbl

[3] Ilin A.M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Mat. zametki, 6:2 (1969), 237–248 | Zbl

[4] Kellogg R.B., Tsan A., “Analysis of some difference approximations for a singular perturbation problems without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | MR | Zbl

[5] Zadorin A.I., Zadorin N.A., “Nepolinomialnaya interpolyatsiya funktsii s bolshimi gradientami i ee primenenie”, Zhurn. vychisl. matematiki i mat. fiziki, 61:2 (2021), 179–188 | DOI | MR | Zbl

[6] Zadorin A.I., “Formuly chislennogo differentsirovaniya funktsii s bolshimi gradientami”, Sib. zhurn. vychisl. matematiki, 26:1 (2023), 17–26 | DOI | Zbl

[7] Zadorin A.I., “Analiz formul chislennogo differentsirovaniya na setke Shishkina pri nalichii pogranichnogo sloya”, Sib. zhurn. vychisl. matematiki, 21:3 (2018), 243–254 | DOI | Zbl

[8] Shishkin G.I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992, 233 pp.

[9] Zadorin A.I., “Analiz formul chislennogo differentsirovaniya na setke Bakhvalova pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matematiki i mat. fiziki, 63:2 (2023), 218–226 | DOI | Zbl

[10] Bakhvalov N.S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matematiki i mat. fiziki, 9:4 (1969), 841–890

[11] Roos H.G., Layer-adapted meshes: milestones in 50 years of history, Preprint, 2019, 16 pp., arXiv: 1909.08273

[12] Vulanović R., “On a numerical solution of a power layer problem”, Proc. III Conf. on Numerical Methods and Approximation Theory, ed. G.V. Milovanovoć, University of Niš, 1988, 423–431 | MR

[13] Dautov R.Z., Timerbaev M.R., Chislennye metody. Priblizhenie funktsii, uch. pos., Izd-vo Kazan. un-ta, Kazan, 2021, 122 pp.

[14] Kopteva N.V., Stynes M., “Approximation of derivatives in a convection-diffusion two-point boundary value problem”, Appl. Numer. Math., 39 (2001), 47–60 | DOI | MR | Zbl

[15] Shishkin G.I., “Approximations of solutions and derivatives for a singularly perturbed elliptic convection-diffusion equations”, Math. Proc. Royal Irish Acad., 103A:4 (2003), 169–201 | DOI | MR | Zbl