@article{TIMM_2024_30_4_a7,
author = {A. V. Eremeev},
title = {On the efficiency of non-elitist evolutionary algorithms in the case of sparsity of the level sets inconsistent with respect to the objective function},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {84--105},
year = {2024},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a7/}
}
TY - JOUR AU - A. V. Eremeev TI - On the efficiency of non-elitist evolutionary algorithms in the case of sparsity of the level sets inconsistent with respect to the objective function JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 84 EP - 105 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a7/ LA - ru ID - TIMM_2024_30_4_a7 ER -
%0 Journal Article %A A. V. Eremeev %T On the efficiency of non-elitist evolutionary algorithms in the case of sparsity of the level sets inconsistent with respect to the objective function %J Trudy Instituta matematiki i mehaniki %D 2024 %P 84-105 %V 30 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a7/ %G ru %F TIMM_2024_30_4_a7
A. V. Eremeev. On the efficiency of non-elitist evolutionary algorithms in the case of sparsity of the level sets inconsistent with respect to the objective function. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 84-105. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a7/
[1] Auger A., Doerr B., Theory of randomized search heuristics: foundations and recent developments, Ser. Theoretical Computer Science, 1, World Scientific, Singapore, 2011, 359 pp. | DOI | MR | Zbl
[2] Borisovskii P. A., Eremeev A. V., “O sravnenii nekotorykh evolyutsionnykh algoritmov”, Avtomatika i telemekhanika, 2004, no. 3, 3–9 | MR | Zbl
[3] Corus D., Dang D.-C., Eremeev A.V., Lehre P.K., “Level-based analysis of genetic algorithms and other search processes”, IEEE Trans. Evolutionary Computation, 22:5 (2018), 707–719 | DOI
[4] Dang D.-C., Eremeev A.V., Lehre P.K., “Escaping local optima with non-elitist evolutionary algorithms”, Proc. of AAAI Conf. on Artificial Intelligence (AAAI'2021), 2021, 12275–12283 | DOI
[5] Dang D.-C., Eremeev A. V., Lehre P. K., “Non-elitist evolutionary algorithms excel in fitness landscapes with sparse deceptive regions and dense valleys”, Proc. of the Genetic and Evolutionary Computation Conf. (GECCO'2021), 2021, 1133–1141 | DOI | MR
[6] Dang D.-C., Eremeev A. V., Lehre P. K., Corrigendum to “Non-elitist evolutionary algorithms excel in fitness landscapes with sparse deceptive regions and dense valleys”({GECCO} 2021), University of Birmingham, Birmingham, 2022, 2 pp. | MR
[7] Dang D.-C., Eremeev A. V., Lehre P. K., Qin X., “Fast non-elitist evolutionary algorithms with power-law ranking selection”, Proc. of the Genetic and Evolutionary Computation Conference (GECCO'2022), 2022, 1372–1380 | DOI | MR
[8] Dang D.-C., Eremeev A. V., Qin X., “Empirical evaluation of evolutionary algorithms with power-law ranking selection”, Proc. of the 13th IFIP International Conference on Intelligent Information Processing, 2024, 217–232 | DOI
[9] Dang D.-C., Jansen T., Lehre P. K., “Populations can be essential in tracking dynamic optima”, Algorithmica, 78:2 (2017), 660–680 | DOI | MR | Zbl
[10] Dang D.-C., Lehre P. K., “Efficient optimisation of noisy fitness functions with population-based evolutionary algorithms”, Proc. of the 2015 Conference on Foundations of Genetic Algorithms (FOGA'2015), 2015, 62–68 | DOI | MR | Zbl
[11] Dang D.-C., Lehre P. K., “Runtime analysis of non-elitist populations: From classical optimisation to partial information”, Algorithmica, 75 (2016), 428–461 | DOI | MR | Zbl
[12] Doerr B., “Does comma selection help to cope with local optima?”, Proc. of the 2020 Genetic and Evolutionary Computation Conference (GECCO 2020), 2020, 1304–1313 | DOI | MR
[13] Doerr B., K{ö}tzing T., “Multiplicative up-drift”, Algorithmica, 83:10 (2021), 3017–3058 | DOI | MR | Zbl
[14] Doerr B., Kötzing T., “Multiplicative up-drift”, Proc. of the Genetic and Evolutionary Computation Conference (GECCO '19), Association for Computing Machinery, NY, 2019, 1470–1478 | DOI | MR
[15] Doerr B., Le H. P., Makhmara R., Nguyen T. D., “Fast genetic algorithms”, Proc. of the 2017 Genetic and Evolutionary Computation Conference (GECCO 2017), 2017, 777–784 | DOI
[16] Doerr C., Lengler J., “Introducing elitist black-box models: When does elitist behavior weaken the performance of evolutionary algorithms?”, Evolutionary Computation, 25:4 (2017), 587–606 | DOI | MR
[17] Droste S., Jansen T., Wegener I., “Upper and lower bounds for randomized search heuristics in black-box optimization”, Theory of Computing Systems, 39:4 (2006), 525–544 | DOI | MR | Zbl
[18] Dubhashi D., Panconesi A., Concentration of measure for the analysis of randomized algorithms, Cambridge University Press, NY, 2009, 195 pp. | DOI | MR | Zbl
[19] Eremeev A. V., “Modeling and analysis of genetic algorithm with tournament selection”, Proc. of Artificial Evolution (AE 1999), Ser. Lecture Notes in Computer Science, 1829, 2000, 84–95 | DOI | Zbl
[20] Goldberg D. E., Genetic Algorithms in search, optimization and machine learning, Addison-Wesley, Reading, MA, 1989, 412 pp. | Zbl
[21] Goldberg D. E., Deb K., “A comparative analysis of selection schemes used in genetic algorithms”, Foundations of Genetic Algorithms, 1991, 69–93 | MR
[22] Lehre P. K., “Fitness-levels for non-elitist populations”, Proc. of the 2011 Genetic and Evolutionary Computation Conference (GECCO 2011), 2011, 2075–2082 | DOI
[23] Lehre P. K., Qin X., “Self-adaptation can help evolutionary algorithms track dynamic optima”, Proc. of the Genetic and Evolutionary Computation Conference (GECCO'2023), 2023, 1619–1627 | DOI | MR
[24] Lehre P. K., Qin X., “Self-adaptation can improve the noise-tolerance of evolutionary algorithms”, Proc. of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA 23), 2023, 105–116 | DOI | MR | Zbl
[25] Neumann F., Witt C., Bioinspired computation in combinatorial optimization: Algorithms and their computational complexity, Natural Computing Ser., Springer, Berlin; Heidelberg, 2010, 216 pp. | DOI | MR | Zbl
[26] Whitley D., “The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best”, Proc. of the Third International Conference on Genetic Algorithms, 1989, 116–121
[27] Zubkov A. M., Popov N. N., “Otnoshenie chastichnogo poryadka, porozhdennoe raspredeleniyami chisla zanyatykh yacheek”, Mat. zametki, 32:1 (1982), 97–102 | MR | Zbl