Full and elementary nets over the field of fractions of a ring with the QR-property
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 77-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The set $\sigma=(\sigma_{ij})$, $1\leq{i, j}\leq{n},$ of additive subgroups $\sigma_{ij}$ of a field $K$ is called a net (carpet) over $K$ of order $n$ if $\sigma_{ir} \sigma_{rj} \subseteq{\sigma_{ij}}$ for all values of the indices $i$, $r$, and $j$. A net considered without the diagonal is called an elementary net. Based on an elementary net $\sigma$, an elementary net subgroup $E(\sigma)$ is defined, which is generated by elementary transvections $t_{ij}(\alpha) = e+\alpha e_{ij}$. An elementary net $\sigma$ is called closed if the subgroup $E(\sigma)$ does not contain new elementary transvections. Suppose that $R$ is a Noetherian domain with the QR-property (i.e., any intermediate subring lying between $R$ and its field of fractions $K$ is a ring of fractions of the ring $R$ with respect to a multiplicative system in $R$), $\sigma=(\sigma_{ij})$ is a complete (elementary) net of order $n\geq 2$ ($n\geq 3$, respectively) over $K$, and the additive subgroups $\sigma_{ij}$ are nonzero $R$-modules. It is proved that, up to conjugation by a diagonal matrix, all $\sigma_{ij}$ are (fractional) ideals of a fixed intermediate subring $P$, $R\subseteq P \subseteq K$, and the inclusions $\pi_{ij}\pi_{ji}\subseteq P$ and $\pi_{ij}\subseteq P\subseteq\pi_{j i}$ hold for all $i$. In particular, the elementary net $\sigma$ is closed.
Keywords: general and special linear groups, full and elementary nets (carpets) of additive subgroups, net subgroup.
@article{TIMM_2024_30_4_a6,
     author = {R. Yu. Dryaeva and V. A. Koibaev},
     title = {Full and elementary nets over the field of fractions of a ring with the {QR-property}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {77--83},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a6/}
}
TY  - JOUR
AU  - R. Yu. Dryaeva
AU  - V. A. Koibaev
TI  - Full and elementary nets over the field of fractions of a ring with the QR-property
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 77
EP  - 83
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a6/
LA  - ru
ID  - TIMM_2024_30_4_a6
ER  - 
%0 Journal Article
%A R. Yu. Dryaeva
%A V. A. Koibaev
%T Full and elementary nets over the field of fractions of a ring with the QR-property
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 77-83
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a6/
%G ru
%F TIMM_2024_30_4_a6
R. Yu. Dryaeva; V. A. Koibaev. Full and elementary nets over the field of fractions of a ring with the QR-property. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 77-83. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a6/

[6] Gilmer R., Ohm J., “Integral domains with quatient overrings”, Math. Ann., 153:2 (1964), 97–103 | DOI | MR | Zbl

[7] Borevich Z. I., “O podgruppakh lineinykh grupp, bogatykh transvektsiyami”, Zap. nauchn. seminarov LOMI, 75, 1978, 22–31 | Zbl

[8] Levchuk V. M., “Zamechanie k teoreme L. Diksona”, Algebra i logika, 22:4 (1983), 421–434 | MR | Zbl

[9] The Kourovka notebook. Unsolved problems in group theory, 20th ed., eds. V.D. Mazurov, E.I. Khukhro, Inst. Math. SO RAN Publ., Novosibirsk, 2022, 269 pp. URL: https://kourovka-notebook.org/ | MR

[10] Koibaev V.A., “Elementarnye seti v lineinykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 134–141

[11] Kuklina S.K., Likhacheva A.O., Nuzhin Ya.N., “O zamknutosti kovrov lieva tipa nad kommutativnymi koltsami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:3 (2015), 192–196 | MR

[12] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972, 160 pp.

[13] Dryaeva R.Yu., Koibaev V.A., Nuzhin Ya.N., “Polnye i elementarnye seti nad polem chastnykh koltsa glavnykh idealov”, Zap. nauch. seminarov POMI RAN, 455 (2017), 42–51

[14] Burbaki N., Kommutativnaya algebra, Mir, M., 1971, 707 pp. | MR