A variant of Stechkin's problem on the best approximation of a fractional order differentiation operator on the axis
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 37-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A solution is given to Stechkin's problem on the best approximation on the real axis of differentiation operators of fractional (more precisely, real) order $k$ in the space $L_2$ by bounded linear operators from the space $L$ to the space $L_2$ on the class of functions whose fractional derivative of order $n$, $0\le k$ is bounded in the space $L_2$. An upper estimate is obtained for the best constant in the corresponding Kolmogorov inequality. It is shown that the well-known Stechkin lower estimate for the value of the problem of approximating the differentiation operator via the best constant in the Kolmogorov inequality is strict in this case; in other words, Stechkin's problem and the Kolmogorov inequality are not consistent.
Keywords: fractional order differentiation operator, Stechkin's problem, Kolmogorov inequality, Carlson inequality.
@article{TIMM_2024_30_4_a3,
     author = {V. V. Arestov},
     title = {A variant of {Stechkin's} problem on the best approximation of a fractional order differentiation operator on the axis},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {37--54},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a3/}
}
TY  - JOUR
AU  - V. V. Arestov
TI  - A variant of Stechkin's problem on the best approximation of a fractional order differentiation operator on the axis
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 37
EP  - 54
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a3/
LA  - ru
ID  - TIMM_2024_30_4_a3
ER  - 
%0 Journal Article
%A V. V. Arestov
%T A variant of Stechkin's problem on the best approximation of a fractional order differentiation operator on the axis
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 37-54
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a3/
%G ru
%F TIMM_2024_30_4_a3
V. V. Arestov. A variant of Stechkin's problem on the best approximation of a fractional order differentiation operator on the axis. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 37-54. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a3/

[1] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 333 pp.

[2] Shilov G.E., Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965, 328 pp. | MR

[3] Buslaev A.P., Magaril-Ilyaev G.G., Tikhomirov V.M., “O suschestvovanii ekstremalnoi funktsii v neravenstve dlya proizvodnykh”, Mat. zametki, 32:6 (1982), 823–834 | MR | Zbl

[4] Szőkefalvi-Nagy B., “Über Integralunglechungen zwischen einer Funktion und ihrer Ableitung”, Acta Sci. Math., 10 (1941), 64–74 | MR

[5] Levin V.I., “Tochnye konstanty v neravenstvakh tipa Karlsona”, Dokl. AN SSSR, 59 (1948), 635–639

[6] Arestov V.V., “Priblizhenie lineinykh operatorov i rodstvennye zadachi”, Tr. MIAN SSSR, 138 (1975), 29–42 | MR | Zbl

[7] Osipenko K.Yu., “Tochnye neravenstva Karlsona so mnogimi vesami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 29:4 (2023), 229–240 | DOI | Zbl

[8] Hardy G.H., Littlewood J.E., “Contribution to the arithmetic theory of series”, Proc. London Math. Soc. 2, 11 (1912), 411–478 | MR

[9] Arestov V.V., Gabushin V.N., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi”, Izv. vuzov. Matematika, 1995, no. 11, 42–68 | Zbl

[10] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6(312) (1996), 89–124 | DOI | MR | Zbl

[11] Babenko V.F., Korneichuk N.P., Kofanov V.A., Pichugov S.A., Neravenstva dlya proizvodnykh i ikh prilozheniya, Nauk. dumka, Kiev, 2003, 591 pp.

[12] Tikhomirov V.M., Magaril-Ilyaev G.G., “Neravenstva dlya proizvodnykh”: A. N. Kolmogorov, Izbrannye tr. Matematika i mekhanika, Nauka, M., 1985, 387–390

[13] Kolmogorov A.N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Izbrannye tr. Matematika i mekhanika, Nauka, M., 1985, 252–263; Математика, кн. 3, Уч. зап. Моск. ун-та, 30, 1939, 3–16 | MR | Zbl

[14] Arestov V.V., “Inequalities for fractional derivatives on the half-line”, Approx. Theory, PWN-Pol. Sci. Publ., Warsaw, 1979, 19–34 | MR

[15] Babenko V.F., Parfinovich N.V., Pichugov S.A., “Neravenstva tipa Kolmogorova dlya norm proizvodnykh Rissa funktsii mnogikh peremennykh s ogranichennym v $L_\infty$ laplasianom i smezhnye zadachi”, Mat. zametki, 95:1 (2014), 3–17 | DOI | MR | Zbl

[16] Babenko V., Kovalenko O., Parfinovych N., “On approximation of hypersingular integral operators by bounded ones”, J. Math. Anal. Appl., 513 (2022), 1–21 | DOI | MR

[17] Stechkin S.B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | MR | Zbl

[18] Arestov V.V., “Priblizhenie operatorov, invariantnykh otnositelno sdviga”, Tr. MIAN SSSR, 138 (1975), 43–70 | MR | Zbl

[19] Khermander L., Otsenki dlya operatorov, invariantnykh otnositelno sdviga, Izd-vo inostr. lit., M., 1962, 71 pp.

[20] Arestov V.V., Akopyan R.R., “Zadacha Stechkina o nailuchshem priblizhenii neogranichennogo operatora ogranichennymi i rodstvennye ei zadachi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:4 (2020), 7–31 | DOI | MR

[21] Arestov V.V., Filatova M.A., “Best approximation of the differentiation operator in the space $L_2$ on the semiaxis”, J. Approx. Theory, 187 (2014), 65–81 | DOI | MR | Zbl

[22] Arestov V.V., “Approximation of differentiation operators by bounded linear operators in Lebesgue spaces on the axis and related problems in the spaces of $(p, q)$-multipliers and their predual spaces”, Ural Math. J., 9:2 (2023), 4–27 | DOI | MR | Zbl

[23] Arestov V.V., “Nailuchshee priblizhenie neogranichennykh operatorov, invariantnykh otnositelno sdviga, lineinymi ogranichennymi operatorami”, Tr. MIAN, 198 (1992), 3–20 | Zbl

[24] Buslaev A.P., “O priblizhenii operatora differentsirovaniya”, Mat. zametki, 29:5 (1981), 731–742 | MR

[25] Timoshin O.A., “Nailuchshee priblizhenie operatora vtoroi smeshannoi proizvodnoi v metrikakh $L$ i $C$ na ploskosti”, Mat. zametki, 36:3 (1984), 369–375 | MR | Zbl

[26] Timoshin O.A., “Tochnye neravenstva mezhdu normami chastnykh proizvodnykh vtorogo i tretego poryadka”, Dokl. RAN, 344:1 (1995), 20–22 | MR | Zbl

[27] Timofeev V.G., “Neravenstvo tipa Landau dlya funktsii neskolkikh peremennykh”, Mat. zametki, 37:5 (1985), 676–689 | MR | Zbl

[28] Magaril-Ilyaev G.G., Osipenko K.Yu., Sivkova E.O., “Optimalnoe vosstanovlenie temperatury truby po netochnym izmereniyam”, Tr. MIAN, 312 (2021), 216–223 | DOI | Zbl

[29] Subbotin Yu.N., Taikov L.V., “Nailuchshee priblizhenie operatora differentsirovaniya v prostranstve $L_2$”, Mat. zametki, 3:2 (1968), 157–164 | Zbl