$\mathcal{K}$-Functionals and exact values of $n$-widths for some classes of functions in the Hardy space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 301-308 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this work, we obtain exact Jackson–Stechkin type inequalities in the Hardy space $H_{q,\rho}$ ($1\le q\le\infty$, $0\rho\le R$), in which the values of the best polynomial approximations are estimated from above in terms of the $\mathcal{K}$-functionals of the $r$th derivatives. For function classes defined by the mentioned characteristics, exact values of Bernstein and Kolmogorov $n$-widths in the space $H_{q,\rho}$ are calculated.
Keywords: Jackson–Stechkin type inequality, best polynomial approximation, $\mathcal{K}$-functional, $n$-widths.
@article{TIMM_2024_30_4_a23,
     author = {M. Sh. Shabozov and R. A. Karimzoda},
     title = {$\mathcal{K}${-Functionals} and exact values of $n$-widths for some classes of functions in the {Hardy} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {301--308},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a23/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - R. A. Karimzoda
TI  - $\mathcal{K}$-Functionals and exact values of $n$-widths for some classes of functions in the Hardy space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 301
EP  - 308
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a23/
LA  - ru
ID  - TIMM_2024_30_4_a23
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A R. A. Karimzoda
%T $\mathcal{K}$-Functionals and exact values of $n$-widths for some classes of functions in the Hardy space
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 301-308
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a23/
%G ru
%F TIMM_2024_30_4_a23
M. Sh. Shabozov; R. A. Karimzoda. $\mathcal{K}$-Functionals and exact values of $n$-widths for some classes of functions in the Hardy space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 301-308. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a23/

[1] Shabozov M.Sh., “O nailuchshem sovmestnom priblizhenii funktsii v prostranstve Bergmana $B_2$”, Mat. zametki, 114:3 (2023), 435–446 | DOI | MR | Zbl

[2] Shabozov M.Sh., Saidusainov M.S., “Srednekvadraticheskoe priblizhenie funktsii kompleksnogo peremennogo summami Fure po ortogonalnym sistemam”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:2 (2019), 258–272 | DOI | MR

[3] Shabozov M.Sh., “O nailuchshem sovmestnom priblizhenii funktsii v prostranstve Khardi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 29:4 (2023), 283–291 | DOI | MR

[4] Smirnov V.I., Lebedev N.A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.; L., 1964, 438 pp. | MR

[5] Pinkus A., $n$-Widths by approximation theory, Springer, Berlin; Heidelberg, 1985, 294 pp. | MR

[6] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980, 264 pp.

[7] Vakarchuk S.B., “$K$-funktsionaly i tochnye znacheniya $n$-poperechnikov nekotorykh klassov iz $L_2$”, Mat. zametki, 66:4 (1999), 494–499 | DOI | Zbl

[8] Vakarchuk S.B., “Priblizhenie funktsii v srednem na veschestvennoi osi algebraicheskimi polinomami s vesom Chebysheva — Ermita i poperechniki funktsionalnykh klassov”, Mat. zametki, 95:5 (2014), 666–684 | DOI | Zbl

[9] Shabozov M.Sh., Yusupov G.A., Zargarov Dzh.Dzh., “O nailuchshei sovmestnoi polinomialnoi approksimatsii funktsii i ikh proizvodnykh v prostranstve Khardi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:4, 240–256 | DOI | MR

[10] Shabozov M.Sh., Shabozova A.A., Mirkalonova M.M., “Otsenka ostatka ryada Teilora dlya nekotorykh klassov analiticheskikh funktsii summami Teilora v prostranstve Khardi”, Dokl. NAN Tadzhikistana, 66:5-6 (2023), 274–282

[11] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976, 304 pp.

[12] Shevchuk I.A., Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992, 224 pp.