@article{TIMM_2024_30_4_a23,
author = {M. Sh. Shabozov and R. A. Karimzoda},
title = {$\mathcal{K}${-Functionals} and exact values of $n$-widths for some classes of functions in the {Hardy} space},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {301--308},
year = {2024},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a23/}
}
TY - JOUR
AU - M. Sh. Shabozov
AU - R. A. Karimzoda
TI - $\mathcal{K}$-Functionals and exact values of $n$-widths for some classes of functions in the Hardy space
JO - Trudy Instituta matematiki i mehaniki
PY - 2024
SP - 301
EP - 308
VL - 30
IS - 4
UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a23/
LA - ru
ID - TIMM_2024_30_4_a23
ER -
%0 Journal Article
%A M. Sh. Shabozov
%A R. A. Karimzoda
%T $\mathcal{K}$-Functionals and exact values of $n$-widths for some classes of functions in the Hardy space
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 301-308
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a23/
%G ru
%F TIMM_2024_30_4_a23
M. Sh. Shabozov; R. A. Karimzoda. $\mathcal{K}$-Functionals and exact values of $n$-widths for some classes of functions in the Hardy space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 301-308. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a23/
[1] Shabozov M.Sh., “O nailuchshem sovmestnom priblizhenii funktsii v prostranstve Bergmana $B_2$”, Mat. zametki, 114:3 (2023), 435–446 | DOI | MR | Zbl
[2] Shabozov M.Sh., Saidusainov M.S., “Srednekvadraticheskoe priblizhenie funktsii kompleksnogo peremennogo summami Fure po ortogonalnym sistemam”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:2 (2019), 258–272 | DOI | MR
[3] Shabozov M.Sh., “O nailuchshem sovmestnom priblizhenii funktsii v prostranstve Khardi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 29:4 (2023), 283–291 | DOI | MR
[4] Smirnov V.I., Lebedev N.A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.; L., 1964, 438 pp. | MR
[5] Pinkus A., $n$-Widths by approximation theory, Springer, Berlin; Heidelberg, 1985, 294 pp. | MR
[6] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980, 264 pp.
[7] Vakarchuk S.B., “$K$-funktsionaly i tochnye znacheniya $n$-poperechnikov nekotorykh klassov iz $L_2$”, Mat. zametki, 66:4 (1999), 494–499 | DOI | Zbl
[8] Vakarchuk S.B., “Priblizhenie funktsii v srednem na veschestvennoi osi algebraicheskimi polinomami s vesom Chebysheva — Ermita i poperechniki funktsionalnykh klassov”, Mat. zametki, 95:5 (2014), 666–684 | DOI | Zbl
[9] Shabozov M.Sh., Yusupov G.A., Zargarov Dzh.Dzh., “O nailuchshei sovmestnoi polinomialnoi approksimatsii funktsii i ikh proizvodnykh v prostranstve Khardi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:4, 240–256 | DOI | MR
[10] Shabozov M.Sh., Shabozova A.A., Mirkalonova M.M., “Otsenka ostatka ryada Teilora dlya nekotorykh klassov analiticheskikh funktsii summami Teilora v prostranstve Khardi”, Dokl. NAN Tadzhikistana, 66:5-6 (2023), 274–282
[11] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976, 304 pp.
[12] Shevchuk I.A., Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992, 224 pp.