On the relation between $\alpha$-sets and weakly convex sets
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 276-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The known relation between $\alpha$-sets and Vial weakly convex sets in Euclidean spaces of dimension greater than two is strengthened. Namely, in the formula describing the relationship between nonconvexity measures for $\alpha$-sets and weakly convex sets, the double Chebyshev radius is replaced by the diameter of the set with a coefficient. However, in the two-dimensional space the corresponding estimate is expressed in terms of the set diameter without a coefficient and is more accurate. In this connection, the question of the possibility of further refinement of the estimate for the nonconvexity degree $\alpha$ in terms of the weak convexity parameter $R$ and the set diameter in Euclidean spaces of dimension greater than two remains open.
Mots-clés : $\alpha$-set
Keywords: weakly convex set, generalized convex set, diameter of a set, Chebyshev radius, convex hull.
@article{TIMM_2024_30_4_a21,
     author = {V. N. Ushakov and A. A. Ershov},
     title = {On the relation between $\alpha$-sets and weakly convex sets},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {276--285},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a21/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. A. Ershov
TI  - On the relation between $\alpha$-sets and weakly convex sets
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 276
EP  - 285
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a21/
LA  - ru
ID  - TIMM_2024_30_4_a21
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. A. Ershov
%T On the relation between $\alpha$-sets and weakly convex sets
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 276-285
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a21/
%G ru
%F TIMM_2024_30_4_a21
V. N. Ushakov; A. A. Ershov. On the relation between $\alpha$-sets and weakly convex sets. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 276-285. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a21/

[1] Uspenskii A.A., Ushakov V.N., Fomin A.N., $\alpha$-Mnozhestva i ikh svoistva, Dep. v VINITI 02.04.2004, # 543-V2004, IMM UrO RAN, Ekaterinburg, 2004, 62 pp.

[2] Zelinskii Yu.B., Vypuklost. Izbrannye glavy, Institut matematiki NAN Ukrainy, Kiev, 2012, 280 pp.

[3] Michael E., “Paraconvex sets”, Mathematica Scandinavica, 7:2 (1959), 312–315 | MR

[4] Ngai H.V., Penot J.-P., “Paraconvex functions and paraconvex sets”, Studia Mathematica, 184:1 (2008), 1–29 | DOI | MR | Zbl

[5] Semenov P.V., “Funktsionalno paravypuklye mnozhestva”, Mat. zametki, 54:6 (1993), 74–81 | Zbl

[6] Ivanov G.E., Slabo vypuklye mnozhestva i funktsii: teoriya i prilozheniya, Fizmatlit, M., 2006

[7] Ushakov V.N., Ershov A.A., “Otsenka rosta stepeni nevypuklosti mnozhestv dostizhimosti upravlyaemykh sistem v terminakh $\alpha$-mnozhestv”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 495 (2020), 73–79

[8] Ushakov V.N., Ershov A.A., Matviichuk A.R., “Ob otsenke stepeni nevypuklosti mnozhestv dostizhimosti upravlyaemykh sistem”, Tr. MIAN, 315 (2021), 261–270 | DOI | Zbl

[9] Ushakov V.N., Uspenskii A.A., “Teoremy ob otdelimosti $\alpha$-mnozhestv v evklidovom prostranstve”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 277–291

[10] Polovinkin E.S., Balashov M.V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007, 438 pp.

[11] Ushakov V.N., Uspenskii A.A., Ershov A.A., “Alfa-mnozhestva v konechnomernykh evklidovykh prostranstvakh i ikh prilozheniya v teorii upravleniya”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matematika. Informatika. Protsessy upravleniya, 14:3 (2018), 261–272 | MR

[12] Garkavi A.L., “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, Uspekhi mat. nauk, 19:6 (1964), 139–145 | MR | Zbl