Strict suns composed of planes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 27-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A set $M$ is a strict sun if, for each $x\notin M$, the set $P_Mx$ of best approximants from $M$ for $x$ is nonempty and each point $y\in P_Mx$ is a nearest point from $M$ for each point $z$ from the ray emanating from $y$ and passing through $x$. Strict suns are sometimes called Kolmogorov sets, because they satisfy the Kolmogorov criterion for best approximation. We study structural properties of strict suns composed of a finite number of planes (affine spaces, which may possibly degenerate to points). We always assume that the union of planes $M:=\bigcup L_i$ is irreducible, i.e., no plane in this union contains another plane from the union. We show that if an irreducible finite union of planes $M :=\bigcup_{i=1}^N L_i$ is a strict sun in a normed space, then $M$ consists of a single plane. In this result, the strict sun cannot be replaced by a sun. A stronger local analog of this result is proved in the space $\ell^\infty_n$. Namely, we show that if $M :=\bigcup_{i=1}^N L_i$ is an irreducible union of planes in $\ell^\infty_n$, $\Pi$ is a bar (intersection of extreme hyperplanes), and $M\cap \Pi\ne \emptyset$, then $M':=M\cap \Pi$ is a strict sun in $\ell^\infty_n$ if and only if $M'$ is convex, i.e., $M'$ is the intersection of some plane $L_i$ with the bar $\Pi$. As a corollary, if $M :=\bigcup_{i=1}^N L_i$ is a local strict sun in $\ell^\infty_n$, then $M$ consists of a single plane. Similar results are also established for sets $M :=\bigcup_{i=1}^N L_i$ with continuous metric projection in $\ell^\infty_n$. The present paper continues and develops the previous studies on approximation by Chebyshev sets composed of planes began by the author of the article and I.G. Tsar'kov in linear normed and asymmetrically normed spaces and the results of I.G. Tsar'kov on sets with piecewise continuous metric projection.
Keywords: best approximation, union of planes, sun, strict sun, discretization.
@article{TIMM_2024_30_4_a2,
     author = {A. R. Alimov},
     title = {Strict suns composed of planes},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {27--36},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a2/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Strict suns composed of planes
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 27
EP  - 36
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a2/
LA  - ru
ID  - TIMM_2024_30_4_a2
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Strict suns composed of planes
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 27-36
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a2/
%G ru
%F TIMM_2024_30_4_a2
A. R. Alimov. Strict suns composed of planes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 27-36. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a2/

[4] Hegde C., Indyk P., Schmidt L., “Approximation algorithms for model-based compressive sensing”, IEEE Trans. Inform. Theory, 61:9 (2015), 5129–5147 | DOI | MR | Zbl

[5] Ismailov V., Ridge functions and applications in neural networks, Ser. Math. Surveys and Monographs, 263, American Mathematical Society, Providence, R.I., 2021, 186 pp. | DOI | MR | Zbl

[6] DeVore R.A., “Nonlinear approximation”, Acta Numerica, 7 (1998), 51–150 | DOI | MR | Zbl

[7] Alimov A.R., Tsar'kov I.G., “Chebyshev unions of planes, and their approximative and geometric properties”, Approx. Theory, 298 (2024), 106009 | DOI | MR | Zbl

[8] Tsarkov I.G., “Chebyshevskie mnozhestva s kusochno-nepreryvnoi metricheskoi proektsiei”, Mat. zametki, 113:6 (2023), 905–917 | DOI | Zbl

[9] Berens H., Hetzelt L., “Die metrische Struktur der Sonnen in $\ell^\infty(n)$”, Aeq. Math., 27:3 (1984), 274–287 | DOI | MR | Zbl

[10] Alimov A.R., “Kharakterizatsiya mnozhestv s nepreryvnoi metricheskoi proektsiei v prostranstve $\ell^\infty_n$”, Mat. zametki, 108:3 (2020), 323–333 | DOI | MR | Zbl

[11] Alimov A.R., Tsarkov I.G., “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, Uspekhi mat. nauk, 71:1 (2016), 3–84 | DOI | MR | Zbl

[12] Brosowski B., Deutsch F., “Radial continuity of set-valued metric projections”, J. Approx. Theory, 11:3 (1974), 236–253 | DOI | MR | Zbl

[13] Nevesenko N.V., “Strogie solntsa i polunepreryvnost snizu metricheskoi proektsii v lineinykh normirovannykh prostranstvakh”, Mat. zametki, 23:4 (1978), 563–572 | MR | Zbl

[14] Tsarkov I.G., “Approksimativnye svoistva mnozhestv i nepreryvnye vyborki”, Mat. sb., 211:8 (2020), 132–157 | DOI | MR | Zbl

[15] Tsarkov I.G., “Nepreryvnost metricheskoi proektsii, strukturnye i approksimativnye svoistva mnozhestv”, Mat. zametki, 47:2 (1990), 137–148

[16] Tsar'kov I.G., “Convexity of $\delta$-suns and $\gamma$-suns in asymmetric spaces”, Russ. J. Math. Phys., 31:2 (2024), 326–335 | DOI | MR

[17] Tsarkov I.G., “Nepreryvnye vyborki iz mnogoznachnykh otobrazhenii i approksimatsiya v nesimmetrichnykh i polulineinykh prostranstvakh”, Izv. RAN Ser. matematicheskaya, 87:4 (2023), 205–22 | DOI | MR

[18] Alimov A.R., “Vyborki iz metricheskoi proektsii i strogaya solnechnost mnozhestv s nepreryvnoi metricheskoi proektsiei”, Mat. sb., 208:7 (2017), 3–18 | DOI | MR | Zbl

[19] Alimov A.R., “Vypuklost i monotonnaya lineinaya svyaznost mnozhestv s nepreryvnoi metricheskoi proektsiei v trekhmernykh prostranstvakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:2 (2020), 45–55 | DOI

[20] Borodin P.A., Savinova E.A., “Vsyakaya chebyshevskaya krivaya bez samoperesechenii monotonna”, Mat. zametki, 116:2 (2024) | DOI | MR | Zbl

[21] Savinova E.A., “Mnozhestva v $\mathbb R^n$, monotonno lineino svyaznye v nekotoroi norme”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2023, no. 1, 53–55 | DOI | MR | Zbl