One example of a continuous nowhere differentiable function whose modulus of continuity does not exceed a given one
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 224-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

There exist positive numbers $C$ and $c$ such that, for an arbitrary concave up function $\omega(t)$ of the modulus of continuity type with $\omega(t)/t\to+\infty$ as $t\to+0$, one can construct an example of a continuous nowhere differentiable Weierstrass-type function $W_\omega(x)$ satisfying the following conditions: $1^{\circ}$. The modulus of continuity of $W_\omega(x)$ does not exceed $C\omega(t)$. $2^{\circ}$. For each point $x_0$, there exists a sequence $\{x_n\}$ convergent to $x_0$, such that $|W_\omega(x_n)-W_\omega(x_0)|>c\,\omega(|x_n-x_0|)$ for each $n$. $3^{\circ}$. At each point $x_0$, the derivative numbers of $W_\omega(x)$ take all values from the interval $[-\infty;+\infty]$.
Keywords: modulus of continuity, nowhere differentiable continuous function, derivative numbers, Weierstrass-type nowhere differentiable continuous function.
@article{TIMM_2024_30_4_a17,
     author = {A. I. Rubinshtein and D. S. Telyakovskii},
     title = {One example of a continuous nowhere differentiable function whose modulus of continuity does not exceed a given one},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {224--233},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a17/}
}
TY  - JOUR
AU  - A. I. Rubinshtein
AU  - D. S. Telyakovskii
TI  - One example of a continuous nowhere differentiable function whose modulus of continuity does not exceed a given one
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 224
EP  - 233
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a17/
LA  - ru
ID  - TIMM_2024_30_4_a17
ER  - 
%0 Journal Article
%A A. I. Rubinshtein
%A D. S. Telyakovskii
%T One example of a continuous nowhere differentiable function whose modulus of continuity does not exceed a given one
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 224-233
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a17/
%G ru
%F TIMM_2024_30_4_a17
A. I. Rubinshtein; D. S. Telyakovskii. One example of a continuous nowhere differentiable function whose modulus of continuity does not exceed a given one. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 224-233. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a17/

[1] Efimov A.V., “Lineinye metody priblizheniya nepreryvnykh periodicheskikh funktsii”, Mat. sb., 54:1 (1961), 51–90 | Zbl

[2] Bolzano B., Functionenlehre, Handwriting 1830, Königliche böhmische Gesellschaft der Wissenschaften, 1930, 207 pp.

[3] Mishura Y., Schied A., “On (signed) Takagi–Landsberg functions: pth variation, maximum, and modulus of continuity”, J. Math. Analisis Appl., 473:1 (2019), 258–272 | DOI | MR | Zbl

[4] Rubinshtein A.I., “Ob $\omega$-lakunarnykh ryadakh i o funktsiyakh klassov $H^\omega$”, Mat. sb., 65:2 (1964), 239–271 | Zbl

[5] Weierstrass K., “Über continuirliche Functionen eines reellen Arguments, die für keinen Werth des letzeren einen bestimmten Differentialquotienten besitzen”, Ausgewahlte Kapitel aus der Funktionenlehre, Vieweg+Teubner Verlag, Wiesbaden, 1872, 190–193 | DOI | MR

[6] Rubinshtein A.I., Telyakovskii D.S., “O funktsiyakh tipa van-der-Vardena”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 23:3 (2023), 339–347 | DOI | MR | Zbl

[7] Myshkis A.D., “Esche o zadache N. N. Luzina”, Uspekhi mat. nauk, 12:2 (74) (1957), 155–157 | MR | Zbl

[8] Telyakovskii D.S., “Ob usloviyakh monogennosti”, Sovremennye problemy teorii funktsii i ikh prilozheniya, materialy 21-i mezhdunar. Saratov. zim. shk., Saratov, 2022, 289–293

[9] Telyakovskii D.S., “Primer nepreryvnoi nigde ne differentsiruemoi funktsii s modulem nepreryvnosti, ne prevoskhodyaschim dannogo”, Vestn. NIYaU MIFI, 11:3 (2022), 228–234 | DOI

[10] Trokhimchuk Yu.Yu., “O dvukh problemakh N.N. Luzina”, Uspekhi mat. nauk, 11:5 (71), 215–222 | MR | Zbl

[11] Dolzhenko E.P., “O proizvodnykh chislakh kompleksnykh funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 26:3 (1962), 347–360 | Zbl