@article{TIMM_2024_30_4_a17,
author = {A. I. Rubinshtein and D. S. Telyakovskii},
title = {One example of a continuous nowhere differentiable function whose modulus of continuity does not exceed a given one},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {224--233},
year = {2024},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a17/}
}
TY - JOUR AU - A. I. Rubinshtein AU - D. S. Telyakovskii TI - One example of a continuous nowhere differentiable function whose modulus of continuity does not exceed a given one JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 224 EP - 233 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a17/ LA - ru ID - TIMM_2024_30_4_a17 ER -
%0 Journal Article %A A. I. Rubinshtein %A D. S. Telyakovskii %T One example of a continuous nowhere differentiable function whose modulus of continuity does not exceed a given one %J Trudy Instituta matematiki i mehaniki %D 2024 %P 224-233 %V 30 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a17/ %G ru %F TIMM_2024_30_4_a17
A. I. Rubinshtein; D. S. Telyakovskii. One example of a continuous nowhere differentiable function whose modulus of continuity does not exceed a given one. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 224-233. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a17/
[1] Efimov A.V., “Lineinye metody priblizheniya nepreryvnykh periodicheskikh funktsii”, Mat. sb., 54:1 (1961), 51–90 | Zbl
[2] Bolzano B., Functionenlehre, Handwriting 1830, Königliche böhmische Gesellschaft der Wissenschaften, 1930, 207 pp.
[3] Mishura Y., Schied A., “On (signed) Takagi–Landsberg functions: pth variation, maximum, and modulus of continuity”, J. Math. Analisis Appl., 473:1 (2019), 258–272 | DOI | MR | Zbl
[4] Rubinshtein A.I., “Ob $\omega$-lakunarnykh ryadakh i o funktsiyakh klassov $H^\omega$”, Mat. sb., 65:2 (1964), 239–271 | Zbl
[5] Weierstrass K., “Über continuirliche Functionen eines reellen Arguments, die für keinen Werth des letzeren einen bestimmten Differentialquotienten besitzen”, Ausgewahlte Kapitel aus der Funktionenlehre, Vieweg+Teubner Verlag, Wiesbaden, 1872, 190–193 | DOI | MR
[6] Rubinshtein A.I., Telyakovskii D.S., “O funktsiyakh tipa van-der-Vardena”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 23:3 (2023), 339–347 | DOI | MR | Zbl
[7] Myshkis A.D., “Esche o zadache N. N. Luzina”, Uspekhi mat. nauk, 12:2 (74) (1957), 155–157 | MR | Zbl
[8] Telyakovskii D.S., “Ob usloviyakh monogennosti”, Sovremennye problemy teorii funktsii i ikh prilozheniya, materialy 21-i mezhdunar. Saratov. zim. shk., Saratov, 2022, 289–293
[9] Telyakovskii D.S., “Primer nepreryvnoi nigde ne differentsiruemoi funktsii s modulem nepreryvnosti, ne prevoskhodyaschim dannogo”, Vestn. NIYaU MIFI, 11:3 (2022), 228–234 | DOI
[10] Trokhimchuk Yu.Yu., “O dvukh problemakh N.N. Luzina”, Uspekhi mat. nauk, 11:5 (71), 215–222 | MR | Zbl
[11] Dolzhenko E.P., “O proizvodnykh chislakh kompleksnykh funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 26:3 (1962), 347–360 | Zbl