Enumeration of intersection arrays of $AT4$-graphs with $q\le 4$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 207-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathcal M$ be a class of strongly regular graphs for which $\mu$ is a nonprincipal eigenvalue. Note that the neighborhood of any vertex of an $AT4$-graph lies in $\mathcal M$. Previously, the parameters of graphs from $\mathcal M$ were described. In this paper, intersection arrays of $AT4$-graphs with $q\le 4$ and the parameters of the corresponding strongly regular graphs are found.
Keywords: strongly regular graph, $AT4$-graph, locally $\mathcal M$-graph.
@article{TIMM_2024_30_4_a15,
     author = {D. V. Paduchikh},
     title = {Enumeration of intersection arrays of $AT4$-graphs with $q\le 4$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {207--211},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a15/}
}
TY  - JOUR
AU  - D. V. Paduchikh
TI  - Enumeration of intersection arrays of $AT4$-graphs with $q\le 4$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 207
EP  - 211
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a15/
LA  - ru
ID  - TIMM_2024_30_4_a15
ER  - 
%0 Journal Article
%A D. V. Paduchikh
%T Enumeration of intersection arrays of $AT4$-graphs with $q\le 4$
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 207-211
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a15/
%G ru
%F TIMM_2024_30_4_a15
D. V. Paduchikh. Enumeration of intersection arrays of $AT4$-graphs with $q\le 4$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 207-211. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a15/

[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc, 1989, 495 pp. | MR | Zbl

[2] Jurisic A., Koolen J., “Krein parameters and antipodal tight graphs with diameter 3 and 4”, Discrete Mathematics, 244 (2002), 181–202 | DOI | MR | Zbl

[3] Makhnev A.A., Paduchikh D.V., “O silno regulyarnykh grafakh s sobstvennym znacheniem $\mu$ i ikh rasshireniyakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 207–214 | MR

[4] Xia Zheng-Jiang, Lee Jae-Ho, Koolen J., “A new feasibility condition to the $AT4$ family”, The Electronic J. Comb., 30:2 (2023), P2.7 | DOI | MR

[5] Jurisic A., Koolen J., “Classification of the family $AT4(qs,q,q)$ of antipodal tight graphs”, J. Comb. Theory, 118:3 (2011), 842–852 | DOI | MR | Zbl