@article{TIMM_2024_30_4_a15,
author = {D. V. Paduchikh},
title = {Enumeration of intersection arrays of $AT4$-graphs with $q\le 4$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {207--211},
year = {2024},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a15/}
}
D. V. Paduchikh. Enumeration of intersection arrays of $AT4$-graphs with $q\le 4$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 207-211. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a15/
[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc, 1989, 495 pp. | MR | Zbl
[2] Jurisic A., Koolen J., “Krein parameters and antipodal tight graphs with diameter 3 and 4”, Discrete Mathematics, 244 (2002), 181–202 | DOI | MR | Zbl
[3] Makhnev A.A., Paduchikh D.V., “O silno regulyarnykh grafakh s sobstvennym znacheniem $\mu$ i ikh rasshireniyakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 207–214 | MR
[4] Xia Zheng-Jiang, Lee Jae-Ho, Koolen J., “A new feasibility condition to the $AT4$ family”, The Electronic J. Comb., 30:2 (2023), P2.7 | DOI | MR
[5] Jurisic A., Koolen J., “Classification of the family $AT4(qs,q,q)$ of antipodal tight graphs”, J. Comb. Theory, 118:3 (2011), 842–852 | DOI | MR | Zbl