Lattice characterizations of $p$-soluble and $p$-supersoluble finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 180-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a finite group, and let ${\mathcal L}(G)$ be the lattice of all subgroups of $G$. A subgroup $M$ of $G$ is called modular in $G$ if $M$ is a modular element (in the Kurosh sense) of the lattice ${ \mathcal L}(G)$, i.e., if (1) $\langle X, M \cap Z \rangle=\langle X, M \rangle \cap Z$ for all $X \leq G, Z \leq G$ such that $X \leq Z$, and (2) $\langle M, Y \cap Z \rangle=\langle M, Y \rangle \cap Z$ for all $Y \leq G, Z \leq G$ such that $M \leq Z$. If $A$ is a subgroup of $G$, then $A_{m G}$ is the subgroup of $A$ generated by all its subgroups that are modular in $G$. We say that a subgroup $A$ is $N$-modular in $G$ ($N\leq G$) if, for some modular subgroup $T$ of $G$ containing $A$, $N$ avoids the pair $(T, A_{mG})$, i.e. $N\cap T=N\cap A_{mG}$. Using these notions, we give new characterizations of $p$-soluble and $p$-supersoluble finite groups.
Keywords: finite group, $p$-supersoluble group, modular subgroup, $N$-modular subgroup.
Mots-clés : $p$-soluble group
@article{TIMM_2024_30_4_a13,
     author = {A. -M. Liu and S. Wang and V. G. Safonov and A. N. Skiba},
     title = {Lattice characterizations of $p$-soluble and $p$-supersoluble finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {180--187},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a13/}
}
TY  - JOUR
AU  - A. -M. Liu
AU  - S. Wang
AU  - V. G. Safonov
AU  - A. N. Skiba
TI  - Lattice characterizations of $p$-soluble and $p$-supersoluble finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 180
EP  - 187
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a13/
LA  - ru
ID  - TIMM_2024_30_4_a13
ER  - 
%0 Journal Article
%A A. -M. Liu
%A S. Wang
%A V. G. Safonov
%A A. N. Skiba
%T Lattice characterizations of $p$-soluble and $p$-supersoluble finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 180-187
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a13/
%G ru
%F TIMM_2024_30_4_a13
A. -M. Liu; S. Wang; V. G. Safonov; A. N. Skiba. Lattice characterizations of $p$-soluble and $p$-supersoluble finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 180-187. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a13/

[1] Schmidt R., Subgroup lattices of groups, Walter de Gruyter, Berlin, 1994, 564 pp. | MR | Zbl

[2] Schmidt R., “Endliche Gruppen mit vielen modularen Untergruppen”, Abhandl. Math. Semin. Univ. Hamburg, 34:1-2 (1969), 115–125 | DOI | MR | Zbl

[3] Skiba A.N., “On sublattices of the subgroup lattice defined byformation Fitting sets”, J. Algebra, 550 (2020), 69–85 | DOI | MR | Zbl

[4] Huppert B., Endliche Gruppen I, Springer-Verlag, Berlin; Heidelberg, 1967, 796 pp. | MR | Zbl