Lattice characterizations of $p$-soluble and $p$-supersoluble finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 180-187
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G$ be a finite group, and let ${\mathcal L}(G)$ be the lattice of all subgroups of $G$. A subgroup $M$ of $G$ is called modular in $G$ if $M$ is a modular element (in the Kurosh sense) of the lattice ${ \mathcal L}(G)$, i.e., if (1) $\langle X, M \cap Z \rangle=\langle X, M \rangle \cap Z$ for all $X \leq G, Z \leq G$ such that $X \leq Z$, and (2) $\langle M, Y \cap Z \rangle=\langle M, Y \rangle \cap Z$ for all $Y \leq G, Z \leq G$ such that $M \leq Z$. If $A$ is a subgroup of $G$, then $A_{m G}$ is the subgroup of $A$ generated by all its subgroups that are modular in $G$. We say that a subgroup $A$ is $N$-modular in $G$ ($N\leq G$) if, for some modular subgroup $T$ of $G$ containing $A$, $N$ avoids the pair $(T, A_{mG})$, i.e. $N\cap T=N\cap A_{mG}$. Using these notions, we give new characterizations of $p$-soluble and $p$-supersoluble finite groups.
Keywords:
finite group, $p$-supersoluble group, modular subgroup, $N$-modular subgroup.
Mots-clés : $p$-soluble group
Mots-clés : $p$-soluble group
@article{TIMM_2024_30_4_a13,
author = {A. -M. Liu and S. Wang and V. G. Safonov and A. N. Skiba},
title = {Lattice characterizations of $p$-soluble and $p$-supersoluble finite groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {180--187},
year = {2024},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a13/}
}
TY - JOUR AU - A. -M. Liu AU - S. Wang AU - V. G. Safonov AU - A. N. Skiba TI - Lattice characterizations of $p$-soluble and $p$-supersoluble finite groups JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 180 EP - 187 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a13/ LA - ru ID - TIMM_2024_30_4_a13 ER -
%0 Journal Article %A A. -M. Liu %A S. Wang %A V. G. Safonov %A A. N. Skiba %T Lattice characterizations of $p$-soluble and $p$-supersoluble finite groups %J Trudy Instituta matematiki i mehaniki %D 2024 %P 180-187 %V 30 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a13/ %G ru %F TIMM_2024_30_4_a13
A. -M. Liu; S. Wang; V. G. Safonov; A. N. Skiba. Lattice characterizations of $p$-soluble and $p$-supersoluble finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 180-187. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a13/
[1] Schmidt R., Subgroup lattices of groups, Walter de Gruyter, Berlin, 1994, 564 pp. | MR | Zbl
[2] Schmidt R., “Endliche Gruppen mit vielen modularen Untergruppen”, Abhandl. Math. Semin. Univ. Hamburg, 34:1-2 (1969), 115–125 | DOI | MR | Zbl
[3] Skiba A.N., “On sublattices of the subgroup lattice defined byformation Fitting sets”, J. Algebra, 550 (2020), 69–85 | DOI | MR | Zbl
[4] Huppert B., Endliche Gruppen I, Springer-Verlag, Berlin; Heidelberg, 1967, 796 pp. | MR | Zbl