On the correctness of one extreme problem related to inverse coefficient problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 170-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An extremal (variational) problem on the minimum of a certain residual functional is considered. The extremal problem is related to the inverse problem of finding the thermal diffusivity coefficient in the stationary diffusion–advection–reaction model. The residual functional is the difference in some metric between the simulated and observed state of the model. Various aspects of the variational problem are studied. It is shown that the set of minimum points in a variational problem may turn out to be empty. Some conditions for the solvability of the variational problem are also given when the set of minimum points is nonempty. Some conditions for the uniqueness of a minimizing element are indicated. The concepts of weak and strong correctness of an extremal problem are formulated. Examples of problems are given in which both weak and strong correctness is absent, or there is weak correctness but no strong correctness. Some conditions of strong correctness for extreme problem are specified. A necessary minimum condition is formulated in the form of the integral and local maximum principle.
Mots-clés : diffusion–advection–reaction equation, thermal diffusivity coefficient, minimum point.
Keywords: inverse problem, residual functional, extremal problem, variational method
@article{TIMM_2024_30_4_a12,
     author = {A. I. Korotkii and I. A. Tsepelev},
     title = {On the correctness of one extreme problem related to inverse coefficient problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {170--179},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a12/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - I. A. Tsepelev
TI  - On the correctness of one extreme problem related to inverse coefficient problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 170
EP  - 179
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a12/
LA  - ru
ID  - TIMM_2024_30_4_a12
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A I. A. Tsepelev
%T On the correctness of one extreme problem related to inverse coefficient problems
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 170-179
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a12/
%G ru
%F TIMM_2024_30_4_a12
A. I. Korotkii; I. A. Tsepelev. On the correctness of one extreme problem related to inverse coefficient problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 170-179. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a12/

[1] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp.

[2] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ikh prilozheniya, Nauka, M., 1978, 206 pp.

[3] Kabanikhin S.I., Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2009, 457 pp.

[4] Samarskii A.A., Vabischevich P.N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, URSS, M., 2004, 480 pp.

[5] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Clarendon Press, Oxford, 1961, 652 pp. | MR | Zbl

[6] Landau L.D., Lifshits E.M., Gidrodinamika, Nauka, M., 1986, 736 pp.

[7] Korotkii A.I., Starodubtseva Yu.V., “Vosstanovlenie koeffitsienta pogloscheniya v modeli statsionarnoi reaktsii-konvektsii-diffuzii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 30:3 (2024), 166–181 | DOI | MR

[8] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, FM, M., 1961, 203 pp. | MR

[9] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[10] Ladyzhenskaya O.A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[11] Mikhailov V.P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 392 pp.

[12] Adams R.A., Sobolev spaces, Academic Press, NY, 1975, 268 pp. | MR | Zbl

[13] Goebel M., “On existence of optimal control”, Mathematische Nachrichten, 1979, no. 93, 67–73 | DOI | MR | Zbl

[14] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[15] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR