@article{TIMM_2024_30_4_a11,
author = {Ph. G. Korablev},
title = {Fibonacci representations of braid groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {149--169},
year = {2024},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a11/}
}
Ph. G. Korablev. Fibonacci representations of braid groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 149-169. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a11/
[1] Bigelow S.L., “Braid groups are linear”, J. American Math. Soc., 14:2 (2001), 471–486 | DOI | MR | Zbl
[2] Burau W., “Uber Zopfgruppen und gleichsinnig verdrillte Verkettungen”, Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 11 (1935), 179–186 | DOI | MR | Zbl
[3] Kassel C., Turaev V., Braid groups, Ser. Graduate Texts in Math., 247, 2008, 348 pp. | DOI | MR | Zbl
[4] Kauffman L.H., Lomanco S.J., “The Fibonacci model and the Temperley–Lieb algebra”, Internat. J. Modern Phys. B, 22:29 (2009), 5065–5080 | DOI | MR
[5] Korablev Ph., Invariants for links and 3-manifolds from the modular category with two simple objects, Preprint, 28 pp., arXiv: 2305.00733
[6] Krammer D., “The braid group $B_4$ is linear”, Inventiones Mathematicae, 142 (2000), 451–486 | DOI | MR | Zbl
[7] Lawrence R.J., “Homological representations of the Hecke algebra”, Communic. Math. Phys., 135:1 (1990), 141–191 | DOI | MR | Zbl
[8] Matveev S.V., Ovchinnikov M.A., Sokolov M.V., “Construction and properties of the $t$-invariant”, J. Math. Sci., 113:6 (2003), 849–855 | DOI | MR
[9] Reshetikhin N., Turaev V., “Invariants of 3-manifolds via link polynomials and quantum groups”, Inventiones mathematicae, 103:3 (1991), 547–597 | DOI | MR | Zbl
[10] Stanley R.P., Catalan numbers, Cambridge University Press, Cambridge, 2015, 215 pp. | DOI | MR | Zbl
[11] Turaev V., “Faithful linear representations of the braid groups”, Seminaire Bourbaki, 42 (1999–2000), 389–409 | MR
[12] Turaev V.G., Quantum invariants of knots and 3-manifolds, Ser. De Gruyter Studies in Math., 2016, 596 pp. | DOI | MR | Zbl
[13] Turaev V., “Operator invariants of tangles, and $R$-matrices”, Math. USSR Izvestiya, 35 (1990), 411–444 | DOI | MR | Zbl
[14] Turaev V., Virelizier A., Monoidal categories and topological field theory, Birkhäuser, Cham, 2017, 513 pp. | DOI | MR | Zbl
[15] Wang Z., Topological quantum computation, CBMS Regional Conference Ser. in Math., 112, 2010, 115 pp. | DOI | MR