Fibonacci representations of braid groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 149-169 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A family of representations is constructed for the braid group $B_n$. The vector spaces on which the braid group acts are defined as the result of identifying the spaces generated by proper colorings of regular trees of degree $3$ with a marked vertex. This identification is done using a family of canonical isomorphisms. The dimensions of the resulting spaces form the sequence of Fibonacci numbers. We then show how the constructed representations can be extended to invariants of unoriented knots and links in a 3-sphere.
Keywords: braid group, representation, knot invariant, Reshetikhin–Turaev type invariant.
@article{TIMM_2024_30_4_a11,
     author = {Ph. G. Korablev},
     title = {Fibonacci representations of braid groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {149--169},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a11/}
}
TY  - JOUR
AU  - Ph. G. Korablev
TI  - Fibonacci representations of braid groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 149
EP  - 169
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a11/
LA  - ru
ID  - TIMM_2024_30_4_a11
ER  - 
%0 Journal Article
%A Ph. G. Korablev
%T Fibonacci representations of braid groups
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 149-169
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a11/
%G ru
%F TIMM_2024_30_4_a11
Ph. G. Korablev. Fibonacci representations of braid groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 149-169. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a11/

[1] Bigelow S.L., “Braid groups are linear”, J. American Math. Soc., 14:2 (2001), 471–486 | DOI | MR | Zbl

[2] Burau W., “Uber Zopfgruppen und gleichsinnig verdrillte Verkettungen”, Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 11 (1935), 179–186 | DOI | MR | Zbl

[3] Kassel C., Turaev V., Braid groups, Ser. Graduate Texts in Math., 247, 2008, 348 pp. | DOI | MR | Zbl

[4] Kauffman L.H., Lomanco S.J., “The Fibonacci model and the Temperley–Lieb algebra”, Internat. J. Modern Phys. B, 22:29 (2009), 5065–5080 | DOI | MR

[5] Korablev Ph., Invariants for links and 3-manifolds from the modular category with two simple objects, Preprint, 28 pp., arXiv: 2305.00733

[6] Krammer D., “The braid group $B_4$ is linear”, Inventiones Mathematicae, 142 (2000), 451–486 | DOI | MR | Zbl

[7] Lawrence R.J., “Homological representations of the Hecke algebra”, Communic. Math. Phys., 135:1 (1990), 141–191 | DOI | MR | Zbl

[8] Matveev S.V., Ovchinnikov M.A., Sokolov M.V., “Construction and properties of the $t$-invariant”, J. Math. Sci., 113:6 (2003), 849–855 | DOI | MR

[9] Reshetikhin N., Turaev V., “Invariants of 3-manifolds via link polynomials and quantum groups”, Inventiones mathematicae, 103:3 (1991), 547–597 | DOI | MR | Zbl

[10] Stanley R.P., Catalan numbers, Cambridge University Press, Cambridge, 2015, 215 pp. | DOI | MR | Zbl

[11] Turaev V., “Faithful linear representations of the braid groups”, Seminaire Bourbaki, 42 (1999–2000), 389–409 | MR

[12] Turaev V.G., Quantum invariants of knots and 3-manifolds, Ser. De Gruyter Studies in Math., 2016, 596 pp. | DOI | MR | Zbl

[13] Turaev V., “Operator invariants of tangles, and $R$-matrices”, Math. USSR Izvestiya, 35 (1990), 411–444 | DOI | MR | Zbl

[14] Turaev V., Virelizier A., Monoidal categories and topological field theory, Birkhäuser, Cham, 2017, 513 pp. | DOI | MR | Zbl

[15] Wang Z., Topological quantum computation, CBMS Regional Conference Ser. in Math., 112, 2010, 115 pp. | DOI | MR