On the existence of a sporadic composition factor in some finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 134-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Assume that $G$ is a finite group, $\pi(G)$ is the set of all prime divisors of its order, and $\omega(G)$ is the set of all orders of its elements (its spectrum). The prime graph (or the Gruenberg–Kegel graph) of a finite group $G$ is a graph $GK(G)$ such that its vertices are the prime divisors of the order of $G$ and two distinct vertices $p$ and $q$ are adjacent in $GK(G)$ if and only if $G$ contains an element of order $pq$. The prime graphs of nonabelian finite simple groups are known. One of the most popular fields of research in finite group theory is the study of finite groups by the properties of their prime graphs. We study nonabelian composition factors of finite groups whose prime graphs are the same as the prime graphs of known simple groups. In 2011, A.M. Staroletov studied finite groups with a sporadic composition factor whose spectrum is the same as the spectrum of a finite simple group. Generalizing this result, we consider the question of whether a composition factor of a finite group whose prime graph is the same as the prime graph of a finite simple group can be isomorphic to a sporadic group. It is shown that a finite group whose prime graph is the same as the prime graph of a simple exceptional group of Lie type other than $G_2(q)$ and ${^3}D_4(q)$ or the prime graph of simple classical groups $L_n(q)$, $U_n(q)$, $O_{2n+1}(q)$, and $S_{2n}(q)$ for large enough $n$ has no sporadic composition factors other than $F_1$. In addition, we describe sporadic composition factors $S$ of finite groups $G$ with the conditions $GK(G)=GK(H)$ and $\pi(G)=\pi(S)$, where $H$ is a simple alternating group or a simple group of Lie type.
Keywords: finite group, exceptional group of Lie type, classical group, Gruenberg–Kegel graph (prime graph).
Mots-clés : simple group, sporadic group
@article{TIMM_2024_30_4_a10,
     author = {M. R. Zinov'eva},
     title = {On the existence of a sporadic composition factor in some finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {134--148},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a10/}
}
TY  - JOUR
AU  - M. R. Zinov'eva
TI  - On the existence of a sporadic composition factor in some finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 134
EP  - 148
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a10/
LA  - ru
ID  - TIMM_2024_30_4_a10
ER  - 
%0 Journal Article
%A M. R. Zinov'eva
%T On the existence of a sporadic composition factor in some finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 134-148
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a10/
%G ru
%F TIMM_2024_30_4_a10
M. R. Zinov'eva. On the existence of a sporadic composition factor in some finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 134-148. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a10/

[1] Kondratev A. S., “Konechnye gruppy s zadannymi svoistvami ikh grafov prostykh chisel”, Algebra i logika, 55:1 (2016), 113–120 | DOI | MR | Zbl

[2] Staroletov A.M., “Sporadic composition factors of finite groups isospectral to simple groups”, Sib. elektron. mat. izv., 2011, no. 8, 268–272 | MR | Zbl

[3] Maslova N.V., Panshin V.V., Staroletov A.M., “On characterization by Gruenberg–Kegel graph of finite simple exceptional groups of Lie type”, European J. Math., 9:78 (2023) | DOI | MR | Zbl

[4] Kondratev A.S., “Konechnye 4-primarnye gruppy s nesvyaznym grafom Gryunberga–Kegelya, soderzhaschim treugolnik”, Algebra i logika, 62:1 (2023), 76–92 | DOI | Zbl

[5] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[6] Zsigmondy K., “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR

[7] Vasilev A.V., Vdovin E.P., “Kriterii smezhnosti v grafe prostykh chisel”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[8] Gerono G.C., “Note sur la r$\acute{e}$solution en nombres entiers et positifs de l'$\acute{e}$quation $x^m=y^n+1$”, Nouv. Ann. Math. (2), 9 (1870), 69–471

[9] Crescenzo P., “A diophantine equation which arises in the theory of finite groups”, Adv. in Math., 17 (1975), 25–29 | DOI | MR | Zbl

[10] Vasilev A.V., Gorshkov I.B., “O raspoznavanii konechnykh prostykh grupp so svyaznym grafom prostykh chisel”, Sib. mat. zhurn., 50:2 (2009), 292–299 | MR | Zbl

[11] Williams J.S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[12] Herzog M., “On finite simple groups of order divisible by three primes only”, J. Algebra, 10:3 (1968), 383–388 | DOI | MR | Zbl

[13] Kondratev A.S., Khramtsov I.V., “O konechnykh chetyreprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 142–159

[14] Kondrat'ev A.S., “Finite almost simple 5-primary groups and their Gruenberg–Kegel graphs”, Sib. elektron. mat. izv., 2014, no. 11, 634–674 | MR | Zbl

[15] Vasilev A.V., Vdovin E.P., “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470 | MR | Zbl

[16] Dolfi S., Dzhabara E., Lyuchido M.S., “C55-gruppy”, Sib. mat. zhurn., 45:6 (2004), 1285–1298 | MR | Zbl

[17] Jansen C., Lux K., Parker R., Wilson R., An atlas of Brauer characters, Lond. Math. Soc. Monogr., New Ser., 11, Clarendon Press, Oxford, 1995, 252 pp. | MR | Zbl

[18] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sib. Elec. Math. Rep., 6 (2009), 1–12 | MR | Zbl

[19] Mazurov V.D., “Kharakterizatsii konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl

[20] Kondratev A.S., Mazurov V.D., “Raspoznavanie znakoperemennykh grupp prostoi stepeni po poryadkam ikh elementov”, Sib. mat. zhurn., 41:2 (2000), 359–369 | MR | Zbl