On estimates of the approximation of functions from a symmetric space by Fourier sums in the uniform metric
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 9-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article discusses the symmetric space of periodic functions of several variables, specifically, the generalized Lorentz–Zygmund space and the Nikol'skii–Besov class within this space. Estimates for the approximation of functions from the Nikol'skii–Besov class by partial sums over step hyperbolic crosses of Fourier series are established in the uniform metric. An analog of the Jackson–Nikol'skii inequality for multiple trigonometric polynomials in the norms of the generalized Lorentz–Zygmund space and the space of continuous functions is proved.
Keywords: symmetric space, Lorentz–Zygmund space.
Mots-clés : Fourier sum, Nikol'skii–Besov class
@article{TIMM_2024_30_4_a1,
     author = {G. A. Akishev},
     title = {On estimates of the approximation of functions from a symmetric space by {Fourier} sums in the uniform metric},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {9--26},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a1/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - On estimates of the approximation of functions from a symmetric space by Fourier sums in the uniform metric
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 9
EP  - 26
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a1/
LA  - ru
ID  - TIMM_2024_30_4_a1
ER  - 
%0 Journal Article
%A G. A. Akishev
%T On estimates of the approximation of functions from a symmetric space by Fourier sums in the uniform metric
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 9-26
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a1/
%G ru
%F TIMM_2024_30_4_a1
G. A. Akishev. On estimates of the approximation of functions from a symmetric space by Fourier sums in the uniform metric. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 9-26. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a1/

[1] Krein S.G., Petunin Yu.I., Semenov E.M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978, 400 pp. | MR

[2] Bennet C., Sharpley R., Interpolation of operators, Acad. Press, NY, 1988, 469 pp. | MR | Zbl

[3] Semenov E.M., “Interpolyatsiya lineinykh operatorov v simmetrichnykh prostranstvakh”, Dokl. AN SSSR, 164:4 (1965), 746–749 | Zbl

[4] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 333 pp.

[5] Edmunds D., Gurka P., “On embeddings of logarithmic Bessel potential spaces”, J. Funct. Anal., 146 (1997), FU963037, 116–150 | DOI | MR | Zbl

[6] Opic B., Pick L., “On generalized Lorentz–Zygmund spaces”, Math. Inequal. Appl., 2:3 (1999), 391–467 | DOI | MR | Zbl

[7] Bennet C., Rudnik K., On Lorentz–Zygmund spaces, Disser. Math., 175, 1979, 66 pp. | MR

[8] Lizorkin P.I., Nikolskii S.M., “Prostranstva funktsii smeshannoi gladkosti s dekompozitsionnoi tochki zreniya”, Tr. MIAN SSSR, 187 (1989), 143–161

[9] Amanov T. I., Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-Ata, 1976, 224 pp. | MR

[10] Lebesgue N., “Sur la representation trigonometrique approchee des fonetions satisfaisant a une condition de Lipschitz”, Bull. Soc. Math. France, 38 (1910), 184–210 | DOI | MR

[11] Oskolkov K.I., “K neravenstvu Lebega v ravnomernoi metrike i na mnozhestve polnoi mery”, Mat. zametki, 18:4 (1975), 515–526 | MR | Zbl

[12] Baiborodov S.P., “Konstanty Lebega i priblizhenie funktsii pryamougolnymi summami Fure v $L^{p}(T^{m})$”, Mat. zametki, 34:1 (1983), 77–90 | MR

[13] Davydov O.V., “O priblizhenii individualnykh funktsii pryamougolnymi summami Fure”, Dokl. AN CCCR, 327:3 (1992), 295–298 | Zbl

[14] Stechkin S.B., “O priblizhenii periodicheskikh funktsii summami Feiera”, Tr. MIAN SSSR, 62 (1961), 48–60 | Zbl

[15] Stečkin S.B., “On the approximation of periodic functions by de la Vallee Poussin sums”, Anal. Math., 4:1 (1978), 61–74 | DOI | MR | Zbl

[16] Damen V., “O nailuchshem priblizhenii i summakh Valle-Pussena”, Mat. zametki, 23:5 (1978), 671–683 | MR | Zbl

[17] Geit V.E., “O tochnosti nekotorykh neravenstv v teorii priblizhenii”, Mat. zametki, 10:5 (1971), 571–582 | MR | Zbl

[18] Ilyasov N.A., “O poryadke priblizheniya v ravnomernoi metrike srednimi Feiera — Zigmunda na klassakh $E_{p}(\varepsilon)$”, Mat. zametki, 69:5 (2001), 679–687 | DOI | MR | Zbl

[19] Trigub R.M., Belinsky E.S., Fourier analysis and approximation of functions, Springer Publ., Dordrecht, 2004, 586 pp. | DOI | MR

[20] Jia-Ding Cao, “Stečkin inequalities for summability methods”, Int. J. Math. Math. Sci., 20:1 (1997), 93–100 | DOI | MR | Zbl

[21] Liflyand I.R., “Tochnyi poryadok konstant Lebega giperbolicheskikh chastnykh summ kratnykh ryadov Fure”, Mat. zametki, 39:5 (1986), 674–683 | MR | Zbl

[22] Temlyakov V.N., “Otsenki asimptoticheskikh kharakteristik klassov funktsii s ogranichennoi smeshannoi proizvodnoi ili raznostyu”, Tr. MIAN, 189 (1989), 138–168

[23] Romanyuk A.S., “Priblizhenie klassov $B_{p, \theta}^{\overline{r}}$ periodicheskikh funktsii mnogikh peremennykh lineinymi metodami i nailuchshie priblizheniya”, Mat. sb., 195:2 (2004), 91–116 | DOI | Zbl

[24] Akishev G., “O poryadkakh $M$-chlennykh priblizhenii klassov funktsii simmetrichnogo prostranstva”, Mat. zhurn., 14:4 (2014), 46–71 | Zbl

[25] Lapin S.V., Nekotorye teoremy vlozheniya dlya proizvedenii funktsii, Dep. v VINITI. 20 fev. 1985. No 1036–80Dep., 31 pp.

[26] Sherstneva L.A., “O svoistvakh nailuchshikh priblizhenii Lorentsa i nekotorye teoremy vlozheniya”, Izv. vuzov. Matematika, 1987, no. 10, 48–58 | MR | Zbl

[27] Bekmaganbetov K.A., “O poryadkakh priblizheniya klassa Besova v metrike anizotropnykh prostranstv Lorentsa”, Ufim. mat. zhurn., 1:2 (2009), 9–16 | Zbl

[28] Temlyakov V.N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN AN SSSR, 178 (1986), 1–112 | Zbl

[29] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp. | MR

[30] Capone Claudia, Fiorenza Alberto, “On small Lebesgue spaces”, J. Func. Space Appl., 3:1 (2005), 73–89 | DOI | MR | Zbl

[31] Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Integral operators in non-standard function spaces, v. 1, Variable exponent Lebesgue and amalgam spaces, Birkhäuser, Cham, 2016, 567 pp. | MR

[32] Neves J.S., Lorentz–Karamata spaces, Bessel and Riesz potential and embeddings, Disser. Math., 405, 2002, 46 pp. | DOI | MR

[33] Temlyakov V.N., “On optimal recovery in $L_{2}$”, J. Complexity, 65 (2021), 101545 | DOI | MR | Zbl

[34] Krieg D., Pozharska K., Ullrich M., Ullrich T., Sampling recovery in the uniform norm, [e-resource], 2023, 29 pp., arXiv: 2305.07539