Mots-clés : Fourier sum, Nikol'skii–Besov class
@article{TIMM_2024_30_4_a1,
author = {G. A. Akishev},
title = {On estimates of the approximation of functions from a symmetric space by {Fourier} sums in the uniform metric},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {9--26},
year = {2024},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a1/}
}
TY - JOUR AU - G. A. Akishev TI - On estimates of the approximation of functions from a symmetric space by Fourier sums in the uniform metric JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 9 EP - 26 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a1/ LA - ru ID - TIMM_2024_30_4_a1 ER -
G. A. Akishev. On estimates of the approximation of functions from a symmetric space by Fourier sums in the uniform metric. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 9-26. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a1/
[1] Krein S.G., Petunin Yu.I., Semenov E.M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978, 400 pp. | MR
[2] Bennet C., Sharpley R., Interpolation of operators, Acad. Press, NY, 1988, 469 pp. | MR | Zbl
[3] Semenov E.M., “Interpolyatsiya lineinykh operatorov v simmetrichnykh prostranstvakh”, Dokl. AN SSSR, 164:4 (1965), 746–749 | Zbl
[4] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 333 pp.
[5] Edmunds D., Gurka P., “On embeddings of logarithmic Bessel potential spaces”, J. Funct. Anal., 146 (1997), FU963037, 116–150 | DOI | MR | Zbl
[6] Opic B., Pick L., “On generalized Lorentz–Zygmund spaces”, Math. Inequal. Appl., 2:3 (1999), 391–467 | DOI | MR | Zbl
[7] Bennet C., Rudnik K., On Lorentz–Zygmund spaces, Disser. Math., 175, 1979, 66 pp. | MR
[8] Lizorkin P.I., Nikolskii S.M., “Prostranstva funktsii smeshannoi gladkosti s dekompozitsionnoi tochki zreniya”, Tr. MIAN SSSR, 187 (1989), 143–161
[9] Amanov T. I., Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-Ata, 1976, 224 pp. | MR
[10] Lebesgue N., “Sur la representation trigonometrique approchee des fonetions satisfaisant a une condition de Lipschitz”, Bull. Soc. Math. France, 38 (1910), 184–210 | DOI | MR
[11] Oskolkov K.I., “K neravenstvu Lebega v ravnomernoi metrike i na mnozhestve polnoi mery”, Mat. zametki, 18:4 (1975), 515–526 | MR | Zbl
[12] Baiborodov S.P., “Konstanty Lebega i priblizhenie funktsii pryamougolnymi summami Fure v $L^{p}(T^{m})$”, Mat. zametki, 34:1 (1983), 77–90 | MR
[13] Davydov O.V., “O priblizhenii individualnykh funktsii pryamougolnymi summami Fure”, Dokl. AN CCCR, 327:3 (1992), 295–298 | Zbl
[14] Stechkin S.B., “O priblizhenii periodicheskikh funktsii summami Feiera”, Tr. MIAN SSSR, 62 (1961), 48–60 | Zbl
[15] Stečkin S.B., “On the approximation of periodic functions by de la Vallee Poussin sums”, Anal. Math., 4:1 (1978), 61–74 | DOI | MR | Zbl
[16] Damen V., “O nailuchshem priblizhenii i summakh Valle-Pussena”, Mat. zametki, 23:5 (1978), 671–683 | MR | Zbl
[17] Geit V.E., “O tochnosti nekotorykh neravenstv v teorii priblizhenii”, Mat. zametki, 10:5 (1971), 571–582 | MR | Zbl
[18] Ilyasov N.A., “O poryadke priblizheniya v ravnomernoi metrike srednimi Feiera — Zigmunda na klassakh $E_{p}(\varepsilon)$”, Mat. zametki, 69:5 (2001), 679–687 | DOI | MR | Zbl
[19] Trigub R.M., Belinsky E.S., Fourier analysis and approximation of functions, Springer Publ., Dordrecht, 2004, 586 pp. | DOI | MR
[20] Jia-Ding Cao, “Stečkin inequalities for summability methods”, Int. J. Math. Math. Sci., 20:1 (1997), 93–100 | DOI | MR | Zbl
[21] Liflyand I.R., “Tochnyi poryadok konstant Lebega giperbolicheskikh chastnykh summ kratnykh ryadov Fure”, Mat. zametki, 39:5 (1986), 674–683 | MR | Zbl
[22] Temlyakov V.N., “Otsenki asimptoticheskikh kharakteristik klassov funktsii s ogranichennoi smeshannoi proizvodnoi ili raznostyu”, Tr. MIAN, 189 (1989), 138–168
[23] Romanyuk A.S., “Priblizhenie klassov $B_{p, \theta}^{\overline{r}}$ periodicheskikh funktsii mnogikh peremennykh lineinymi metodami i nailuchshie priblizheniya”, Mat. sb., 195:2 (2004), 91–116 | DOI | Zbl
[24] Akishev G., “O poryadkakh $M$-chlennykh priblizhenii klassov funktsii simmetrichnogo prostranstva”, Mat. zhurn., 14:4 (2014), 46–71 | Zbl
[25] Lapin S.V., Nekotorye teoremy vlozheniya dlya proizvedenii funktsii, Dep. v VINITI. 20 fev. 1985. No 1036–80Dep., 31 pp.
[26] Sherstneva L.A., “O svoistvakh nailuchshikh priblizhenii Lorentsa i nekotorye teoremy vlozheniya”, Izv. vuzov. Matematika, 1987, no. 10, 48–58 | MR | Zbl
[27] Bekmaganbetov K.A., “O poryadkakh priblizheniya klassa Besova v metrike anizotropnykh prostranstv Lorentsa”, Ufim. mat. zhurn., 1:2 (2009), 9–16 | Zbl
[28] Temlyakov V.N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN AN SSSR, 178 (1986), 1–112 | Zbl
[29] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp. | MR
[30] Capone Claudia, Fiorenza Alberto, “On small Lebesgue spaces”, J. Func. Space Appl., 3:1 (2005), 73–89 | DOI | MR | Zbl
[31] Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Integral operators in non-standard function spaces, v. 1, Variable exponent Lebesgue and amalgam spaces, Birkhäuser, Cham, 2016, 567 pp. | MR
[32] Neves J.S., Lorentz–Karamata spaces, Bessel and Riesz potential and embeddings, Disser. Math., 405, 2002, 46 pp. | DOI | MR
[33] Temlyakov V.N., “On optimal recovery in $L_{2}$”, J. Complexity, 65 (2021), 101545 | DOI | MR | Zbl
[34] Krieg D., Pozharska K., Ullrich M., Ullrich T., Sampling recovery in the uniform norm, [e-resource], 2023, 29 pp., arXiv: 2305.07539