@article{TIMM_2024_30_3_a9,
author = {N. M. Dmitruk},
title = {A method for constructing multiply closed strategies in the problem of minimizing the total control impulse in a linear system with disturbance},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {122--138},
year = {2024},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a9/}
}
TY - JOUR AU - N. M. Dmitruk TI - A method for constructing multiply closed strategies in the problem of minimizing the total control impulse in a linear system with disturbance JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 122 EP - 138 VL - 30 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a9/ LA - ru ID - TIMM_2024_30_3_a9 ER -
%0 Journal Article %A N. M. Dmitruk %T A method for constructing multiply closed strategies in the problem of minimizing the total control impulse in a linear system with disturbance %J Trudy Instituta matematiki i mehaniki %D 2024 %P 122-138 %V 30 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a9/ %G ru %F TIMM_2024_30_3_a9
N. M. Dmitruk. A method for constructing multiply closed strategies in the problem of minimizing the total control impulse in a linear system with disturbance. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 122-138. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a9/
[1] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 520 pp. | MR
[2] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1978, 392 pp.
[3] Bellman R., Dinamicheskoe programmirovanie, Inostrannaya literatura, M., 1960, 400 pp.
[4] Lee J.H., Yu Z., “Worst-case formulations of model predictive control for systems with bounded parameters”, Automatica, 33:5 (1997), 763–781 | DOI | MR | Zbl
[5] Bemporad A., Borrelli F., Morari M., “Min-max control of constrained uncertain discrete-time linear systems”, IEEE Trans. Autom. Control, 48:9 (2003), 1600–1606 | DOI | MR | Zbl
[6] Gabasov R., Kirillova F.M., Kostina E.A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. I. Odnokratnoe zamykanie”, Avtomatika i telemekhanika, 1996, no. 7, 121–130 | Zbl
[7] Gabasov R., Kirillova F.M., Kostina E.A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. II. Mnogokratno zamykaemye obratnye svyazi”, Avtomatika i telemekhanika, 1996, no. 8, 90–99 | Zbl
[8] Balashevich N.V., Gabasov R., Kirillova F.M., “Postroenie optimalnykh obratnykh svyazei po matematicheskim modelyam s neopredelennostyu”, Zhurn. vychisl. matematiki i mat. fiziki, 44:2 (2004), 265–286 | MR | Zbl
[9] Kostina E., Kostyukova O., “Worst-case control policies for (terminal) linear-quadratic control problems under disturbances”, Inter. J. Robust and Nonlinear Control., 19:17 (2009), 1940–1958 | DOI | MR | Zbl
[10] Dmitruk N.M., “Optimalnaya strategiya s odnim momentom zamykaniya v lineinoi zadache optimalnogo garantirovannogo upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 58:2 (2018), 664–681 | DOI | Zbl
[11] Kastsiukevich D.A., Dmitruk N.M., “A method for constructing an optimal control strategy in a linear terminal problem”, J. Belarus. State Univ. Mathematics and Informatics, 2021, no. 2, 38–50 | DOI | MR
[12] Dmitruk N.M., “Mnogokratno zamykaemaya strategiya upravleniya v lineinoi terminalnoi zadache optimalnogo garantirovannogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:3 (2022), 66–82 | DOI | Zbl
[13] Boyd S., Vandenberghe L., Convex optimization, Cambridge Uni. Press, NY, 2004, 716 pp. | MR | Zbl
[14] Gal T., Postoptimal analyses, parametric programming and related topics, De Gruyter, Berlin, 1995, 437 pp. | MR