A method for constructing multiply closed strategies in the problem of minimizing the total control impulse in a linear system with disturbance
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 122-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper deals with an optimal control problem for a linear discrete-time system subject to unknown bounded disturbance. It is required to steer the system robustly to a terminal set with the smallest total impulse of the control function. A problem of constructing an optimal multiply closed control strategy is formulated. It is assumed that the system states are measured and the control is corrected at some future times. A method for calculating an optimal strategy based on reducing the formulated problems to linear programs is proposed.
Keywords: linear system, disturbances, robust optimal control, control strategy, algorithm.
@article{TIMM_2024_30_3_a9,
     author = {N. M. Dmitruk},
     title = {A method for constructing multiply closed strategies in the problem of minimizing the total control impulse in a linear system with disturbance},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {122--138},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a9/}
}
TY  - JOUR
AU  - N. M. Dmitruk
TI  - A method for constructing multiply closed strategies in the problem of minimizing the total control impulse in a linear system with disturbance
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 122
EP  - 138
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a9/
LA  - ru
ID  - TIMM_2024_30_3_a9
ER  - 
%0 Journal Article
%A N. M. Dmitruk
%T A method for constructing multiply closed strategies in the problem of minimizing the total control impulse in a linear system with disturbance
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 122-138
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a9/
%G ru
%F TIMM_2024_30_3_a9
N. M. Dmitruk. A method for constructing multiply closed strategies in the problem of minimizing the total control impulse in a linear system with disturbance. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 122-138. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a9/

[1] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 520 pp. | MR

[2] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1978, 392 pp.

[3] Bellman R., Dinamicheskoe programmirovanie, Inostrannaya literatura, M., 1960, 400 pp.

[4] Lee J.H., Yu Z., “Worst-case formulations of model predictive control for systems with bounded parameters”, Automatica, 33:5 (1997), 763–781 | DOI | MR | Zbl

[5] Bemporad A., Borrelli F., Morari M., “Min-max control of constrained uncertain discrete-time linear systems”, IEEE Trans. Autom. Control, 48:9 (2003), 1600–1606 | DOI | MR | Zbl

[6] Gabasov R., Kirillova F.M., Kostina E.A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. I. Odnokratnoe zamykanie”, Avtomatika i telemekhanika, 1996, no. 7, 121–130 | Zbl

[7] Gabasov R., Kirillova F.M., Kostina E.A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. II. Mnogokratno zamykaemye obratnye svyazi”, Avtomatika i telemekhanika, 1996, no. 8, 90–99 | Zbl

[8] Balashevich N.V., Gabasov R., Kirillova F.M., “Postroenie optimalnykh obratnykh svyazei po matematicheskim modelyam s neopredelennostyu”, Zhurn. vychisl. matematiki i mat. fiziki, 44:2 (2004), 265–286 | MR | Zbl

[9] Kostina E., Kostyukova O., “Worst-case control policies for (terminal) linear-quadratic control problems under disturbances”, Inter. J. Robust and Nonlinear Control., 19:17 (2009), 1940–1958 | DOI | MR | Zbl

[10] Dmitruk N.M., “Optimalnaya strategiya s odnim momentom zamykaniya v lineinoi zadache optimalnogo garantirovannogo upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 58:2 (2018), 664–681 | DOI | Zbl

[11] Kastsiukevich D.A., Dmitruk N.M., “A method for constructing an optimal control strategy in a linear terminal problem”, J. Belarus. State Univ. Mathematics and Informatics, 2021, no. 2, 38–50 | DOI | MR

[12] Dmitruk N.M., “Mnogokratno zamykaemaya strategiya upravleniya v lineinoi terminalnoi zadache optimalnogo garantirovannogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:3 (2022), 66–82 | DOI | Zbl

[13] Boyd S., Vandenberghe L., Convex optimization, Cambridge Uni. Press, NY, 2004, 716 pp. | MR | Zbl

[14] Gal T., Postoptimal analyses, parametric programming and related topics, De Gruyter, Berlin, 1995, 437 pp. | MR