@article{TIMM_2024_30_3_a8,
author = {A. A. Davydov and A. S. Platov and D. V. Tunitsky},
title = {Existence of an optimal stationary solution in the {KPP} model under nonlocal competition},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {113--121},
year = {2024},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a8/}
}
TY - JOUR AU - A. A. Davydov AU - A. S. Platov AU - D. V. Tunitsky TI - Existence of an optimal stationary solution in the KPP model under nonlocal competition JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 113 EP - 121 VL - 30 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a8/ LA - ru ID - TIMM_2024_30_3_a8 ER -
%0 Journal Article %A A. A. Davydov %A A. S. Platov %A D. V. Tunitsky %T Existence of an optimal stationary solution in the KPP model under nonlocal competition %J Trudy Instituta matematiki i mehaniki %D 2024 %P 113-121 %V 30 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a8/ %G ru %F TIMM_2024_30_3_a8
A. A. Davydov; A. S. Platov; D. V. Tunitsky. Existence of an optimal stationary solution in the KPP model under nonlocal competition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 113-121. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a8/
[1] Berestycki H., Francois H., Roques L., “Analysis of the priodically fragmented environment model: I Species persistence”, J. Math. Biol., 51 (2005), 75–113 | DOI | MR | Zbl
[2] Berestycki H., Francois H., Roques L., “Analysis of the periodically fragmented environment model: II–biological invasions and pulsating travelling fronts”, J. Math. Pures Appl., 84:8 (2005), 1101–1146 | DOI | MR | Zbl
[3] Daners D., Medina P., Abstract evolution equations. Periodic problems and applications, Pitman Research Notes in Math. Ser., 279, Longman Scientific Technical, Harlow, 1992, 249 pp. | MR | Zbl
[4] Henderson K., Loreau M., “An ecological theory of changing human population dynamics”, People Nature, 1:1 (2019), 31–43 | DOI
[5] Hess P., Periodic-parabolic boundary value problems and positivity, Pitman Research Notes in Math. Ser., 247, John Wiley Sons, NY, 1991, 139 pp. | MR | Zbl
[6] Cohen P.J., Foale S.J., “Sustaining small-scale fisheries with periodically harvested marine reserves”, Marine Policy, 37:1 (2013), 278–287 | DOI
[7] Pethame B., Parabolic equations in biology: growth, reaction, movement and diffusion, Ser. Lecture Notes Math. Modelling Life Sci., Springer, Cham, 2015, 199 pp. | DOI | MR
[8] Undersander D., Albert B., Cosgrove D., Johnson D., Peterson P., Pastures for profit: A guide to rotational grazing, A3529, Cooperative Extension Publ., University of Wisconsin-Extension, Madison, 2002, 43 pp.
[9] Verhulst P.F., “Notice sur la loi que la populations suit dans son accroissement”, Correspondance mathematique et physique, 10 (1838), 113–121, Ghent
[10] Belyakov A.O., Davydov A.A., “Optimizatsiya effektivnosti tsiklicheskogo ispolzovaniya vozobnovlyaemogo resursa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 38–46 | DOI
[11] Belyakov A.O., Davydov A.A., Veliov V.M., “Optimal cyclic exploitation of renewable resources”, J. Dyn. Control Syst., 21:3 (2015), 475–494 | DOI | MR | Zbl
[12] Davydov A.A., Vinnikov E.V., “Optimal cyclic dynamic of distributed population under permanent and impulse harvesting”, Dynamic Control and Optimiz ((DCO 2021): Proc.), Ser. Springer Proc. Math. Stat., 407, 2023, 101–112 | DOI | MR
[13] Du Y., Peng R., “The periodic logistic equation with spatial and temporal degeneracies”, Trans. Amer. Math. Soc., 364:11 (2012), 6039–6070 | DOI | MR | Zbl
[14] Medina P.K., “Feedback stabilizability of time-periodic parabolic equations”, Dynamics Reported, Ser. Expositions in Dynamical Systems, 5, eds. C.K.R.T. Jones, U. Kirchgraber, H.O. Walther, Springer, Berlin; Heidelberg, 1996, 26–98 | DOI | MR | Zbl
[15] Tunitskii D.V., “Ekspluatatsiya vozobnovlyaemogo resursa, raspredelennogo na poverkhnosti Zemli”, Mezhdunar. konf. “Sistemnyi analiz: modelirovanie i upravlenie”, posvyaschennaya pamyati akad. A. V. Kryazhimskogo, tez. dokl. (Moskva, 23, 24 yanvarya 2024 g., MGU imeni M.V. Lomonosova), MAKS Press, Moskva, 2024, 113–114 | DOI
[16] Kolmogorov A.N., Petrovskii I.G., Piskunov N.S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byulleten MGU. Ser. A. Matematika i Mekhanika, 1:6 (1937), 1–26
[17] Fisher R.A., “The Wave of advance of advantageous genes”, Annals of Eugenics, 7:4 (1937), 353–369 | DOI
[18] Fourier J.B.J., Theorie Analytique de la Chaleur, F. Didot, Paris, 1822, 674 pp. | MR
[19] Vinnikov E.V., Davydov A.A., Tunitskii D.V., “Suschestvovanie maksimalnogo srednego vremennogo sbora v KPP-modeli na sfere pri postoyannom i impulsnom otborakh”, Dokl. RAN. Matematika, informatika, protsessy upravleniya,, 514:1 (2023), 59–64 | DOI | Zbl
[20] Tunitskii D.V., “O razreshimosti polulineinykh ellipticheskikh uravnenii vtorogo poryadka na zamknutykh mnogoobraziyakh”, Izv. RAN. Ser. matematicheskaya, 86:5 (2022), 97–115 | DOI | MR | Zbl
[21] Tunitskii D.V., “O stabilizatsii reshenii polulineinykh parabolicheskikh uravnenii vtorogo poryadka na zamknutykh mnogoobraziyakh”, Izv. RAN. Ser. matematicheskaya, 87:4 (2023), 186–204 | DOI | MR | Zbl
[22] Davydov A.A., Platov A.S., “Optimal stationary solution in forest management model by accounting intra-species competition”, Mosc. Math. J., 12:2 (2012), 269–273 | DOI | MR | Zbl
[23] Davydov A.A., Platov A.S., “Optimalnaya ekspluatatsiya dvukh strukturirovannykh po razmeru konkuriruyuschikh populyatsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 89–94
[24] Tarniceriu O.C., Veliov V.M., “Optimal control of a class of size-structured systems”, Large-Scale Scientific Computing (LSSC 2007): Proc., Ser. Lecture Notes in Computer Science, 4818, eds. I. Lirkov, S. Margenov, J. Wasniewski, Springer, Berlin; Heidelberg, 2007, 366–373 | DOI | MR
[25] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR
[26] Belyakov A.O., Davydov A.A., “Optimalnyi tsiklicheskii sbor raspredelennogo vozobnovlyaemogo resursa s diffuziei”, Tr. MIAN, 315 (2021), 64–73 | DOI | Zbl
[27] Aseev S.M., Kryazhimskii A.V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257 (2007), 3–271
[28] Aseev S.M., Velov V.M., “Drugoi vzglyad na printsip maksimuma dlya zadach optimalnogo upravleniya s beskonechnym gorizontom v ekonomike”, Uspekhi mat. nauk, 74:6 (2019), 3–54 | DOI | MR | Zbl
[29] Davydov A.A., Nassar A.F., “O statsionarnom sostoyanii v dinamike populyatsii s ierarkhicheskoi konkurentsiei”, Uspekhi mat. nauk, 69:6 (2014), 179–180 | DOI | MR | Zbl