Existence of an optimal stationary solution in the KPP model under nonlocal competition
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 113-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a resource distributed on a compact closed connected manifold without edge, for example, on a two-dimensional sphere representing the Earth surface. The dynamics of the resource is governed by a model of the Fisher–Kolmogorov–Petrovsky–Piskunov type with coefficients in the reaction term depending on the total amount of the resource, which makes the model equation nonlocal. Under natural assumptions about the model parameters, it is shown that there is at most one nontrivial nonnegative stationary distribution of the resource. Moreover, in the case of constant distributed resource harvesting, there is a harvesting strategy under which such a distribution maximizes the time-averaged resource harvesting over the stationary states.
Keywords: KPP model, stationary solution, time-averaged harvesting, optimal strategy.
@article{TIMM_2024_30_3_a8,
     author = {A. A. Davydov and A. S. Platov and D. V. Tunitsky},
     title = {Existence of an optimal stationary solution in the {KPP} model under nonlocal competition},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {113--121},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a8/}
}
TY  - JOUR
AU  - A. A. Davydov
AU  - A. S. Platov
AU  - D. V. Tunitsky
TI  - Existence of an optimal stationary solution in the KPP model under nonlocal competition
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 113
EP  - 121
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a8/
LA  - ru
ID  - TIMM_2024_30_3_a8
ER  - 
%0 Journal Article
%A A. A. Davydov
%A A. S. Platov
%A D. V. Tunitsky
%T Existence of an optimal stationary solution in the KPP model under nonlocal competition
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 113-121
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a8/
%G ru
%F TIMM_2024_30_3_a8
A. A. Davydov; A. S. Platov; D. V. Tunitsky. Existence of an optimal stationary solution in the KPP model under nonlocal competition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 113-121. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a8/

[1] Berestycki H., Francois H., Roques L., “Analysis of the priodically fragmented environment model: I Species persistence”, J. Math. Biol., 51 (2005), 75–113 | DOI | MR | Zbl

[2] Berestycki H., Francois H., Roques L., “Analysis of the periodically fragmented environment model: II–biological invasions and pulsating travelling fronts”, J. Math. Pures Appl., 84:8 (2005), 1101–1146 | DOI | MR | Zbl

[3] Daners D., Medina P., Abstract evolution equations. Periodic problems and applications, Pitman Research Notes in Math. Ser., 279, Longman Scientific Technical, Harlow, 1992, 249 pp. | MR | Zbl

[4] Henderson K., Loreau M., “An ecological theory of changing human population dynamics”, People Nature, 1:1 (2019), 31–43 | DOI

[5] Hess P., Periodic-parabolic boundary value problems and positivity, Pitman Research Notes in Math. Ser., 247, John Wiley Sons, NY, 1991, 139 pp. | MR | Zbl

[6] Cohen P.J., Foale S.J., “Sustaining small-scale fisheries with periodically harvested marine reserves”, Marine Policy, 37:1 (2013), 278–287 | DOI

[7] Pethame B., Parabolic equations in biology: growth, reaction, movement and diffusion, Ser. Lecture Notes Math. Modelling Life Sci., Springer, Cham, 2015, 199 pp. | DOI | MR

[8] Undersander D., Albert B., Cosgrove D., Johnson D., Peterson P., Pastures for profit: A guide to rotational grazing, A3529, Cooperative Extension Publ., University of Wisconsin-Extension, Madison, 2002, 43 pp.

[9] Verhulst P.F., “Notice sur la loi que la populations suit dans son accroissement”, Correspondance mathematique et physique, 10 (1838), 113–121, Ghent

[10] Belyakov A.O., Davydov A.A., “Optimizatsiya effektivnosti tsiklicheskogo ispolzovaniya vozobnovlyaemogo resursa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 38–46 | DOI

[11] Belyakov A.O., Davydov A.A., Veliov V.M., “Optimal cyclic exploitation of renewable resources”, J. Dyn. Control Syst., 21:3 (2015), 475–494 | DOI | MR | Zbl

[12] Davydov A.A., Vinnikov E.V., “Optimal cyclic dynamic of distributed population under permanent and impulse harvesting”, Dynamic Control and Optimiz ((DCO 2021): Proc.), Ser. Springer Proc. Math. Stat., 407, 2023, 101–112 | DOI | MR

[13] Du Y., Peng R., “The periodic logistic equation with spatial and temporal degeneracies”, Trans. Amer. Math. Soc., 364:11 (2012), 6039–6070 | DOI | MR | Zbl

[14] Medina P.K., “Feedback stabilizability of time-periodic parabolic equations”, Dynamics Reported, Ser. Expositions in Dynamical Systems, 5, eds. C.K.R.T. Jones, U. Kirchgraber, H.O. Walther, Springer, Berlin; Heidelberg, 1996, 26–98 | DOI | MR | Zbl

[15] Tunitskii D.V., “Ekspluatatsiya vozobnovlyaemogo resursa, raspredelennogo na poverkhnosti Zemli”, Mezhdunar. konf. “Sistemnyi analiz: modelirovanie i upravlenie”, posvyaschennaya pamyati akad. A. V. Kryazhimskogo, tez. dokl. (Moskva, 23, 24 yanvarya 2024 g., MGU imeni M.V. Lomonosova), MAKS Press, Moskva, 2024, 113–114 | DOI

[16] Kolmogorov A.N., Petrovskii I.G., Piskunov N.S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byulleten MGU. Ser. A. Matematika i Mekhanika, 1:6 (1937), 1–26

[17] Fisher R.A., “The Wave of advance of advantageous genes”, Annals of Eugenics, 7:4 (1937), 353–369 | DOI

[18] Fourier J.B.J., Theorie Analytique de la Chaleur, F. Didot, Paris, 1822, 674 pp. | MR

[19] Vinnikov E.V., Davydov A.A., Tunitskii D.V., “Suschestvovanie maksimalnogo srednego vremennogo sbora v KPP-modeli na sfere pri postoyannom i impulsnom otborakh”, Dokl. RAN. Matematika, informatika, protsessy upravleniya,, 514:1 (2023), 59–64 | DOI | Zbl

[20] Tunitskii D.V., “O razreshimosti polulineinykh ellipticheskikh uravnenii vtorogo poryadka na zamknutykh mnogoobraziyakh”, Izv. RAN. Ser. matematicheskaya, 86:5 (2022), 97–115 | DOI | MR | Zbl

[21] Tunitskii D.V., “O stabilizatsii reshenii polulineinykh parabolicheskikh uravnenii vtorogo poryadka na zamknutykh mnogoobraziyakh”, Izv. RAN. Ser. matematicheskaya, 87:4 (2023), 186–204 | DOI | MR | Zbl

[22] Davydov A.A., Platov A.S., “Optimal stationary solution in forest management model by accounting intra-species competition”, Mosc. Math. J., 12:2 (2012), 269–273 | DOI | MR | Zbl

[23] Davydov A.A., Platov A.S., “Optimalnaya ekspluatatsiya dvukh strukturirovannykh po razmeru konkuriruyuschikh populyatsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 89–94

[24] Tarniceriu O.C., Veliov V.M., “Optimal control of a class of size-structured systems”, Large-Scale Scientific Computing (LSSC 2007): Proc., Ser. Lecture Notes in Computer Science, 4818, eds. I. Lirkov, S. Margenov, J. Wasniewski, Springer, Berlin; Heidelberg, 2007, 366–373 | DOI | MR

[25] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[26] Belyakov A.O., Davydov A.A., “Optimalnyi tsiklicheskii sbor raspredelennogo vozobnovlyaemogo resursa s diffuziei”, Tr. MIAN, 315 (2021), 64–73 | DOI | Zbl

[27] Aseev S.M., Kryazhimskii A.V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257 (2007), 3–271

[28] Aseev S.M., Velov V.M., “Drugoi vzglyad na printsip maksimuma dlya zadach optimalnogo upravleniya s beskonechnym gorizontom v ekonomike”, Uspekhi mat. nauk, 74:6 (2019), 3–54 | DOI | MR | Zbl

[29] Davydov A.A., Nassar A.F., “O statsionarnom sostoyanii v dinamike populyatsii s ierarkhicheskoi konkurentsiei”, Uspekhi mat. nauk, 69:6 (2014), 179–180 | DOI | MR | Zbl