The value and optimal strategies in a positional differential game for a neutral-type system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 86-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

On a finite time interval, a differential game for the minimax–maximin of a given cost functional is considered. In this game, the motion of a conflict-controlled dynamical system is described by functional differential equations of neutral type in Hale's form. Under assumptions more general than those considered previously, a theorem on the existence of the value and saddle point of the game in classes of players' closed-loop control strategies with memory of the motion history is proved. The proof involves the technique of the corresponding path-dependent Hamilton–Jacobi equations with coinvariant derivatives and the theory of minimax (generalized) solutions of such equations. In order to construct optimal strategies, which constitute a saddle point of the game, a recent result on the existence and uniqueness of a suitable minimax solution and a special Lyapunov–Krasovskii functional are used.
Keywords: differential game, game value, optimal strategies, path-dependent Hamilton–Jacobi equation, coinvariant derivatives, minimax solution.
Mots-clés : neutral-type equation
@article{TIMM_2024_30_3_a6,
     author = {M. I. Gomoyunov and N. Yu. Lukoyanov},
     title = {The value and optimal strategies in a positional differential game for a neutral-type system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {86--98},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a6/}
}
TY  - JOUR
AU  - M. I. Gomoyunov
AU  - N. Yu. Lukoyanov
TI  - The value and optimal strategies in a positional differential game for a neutral-type system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 86
EP  - 98
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a6/
LA  - ru
ID  - TIMM_2024_30_3_a6
ER  - 
%0 Journal Article
%A M. I. Gomoyunov
%A N. Yu. Lukoyanov
%T The value and optimal strategies in a positional differential game for a neutral-type system
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 86-98
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a6/
%G ru
%F TIMM_2024_30_3_a6
M. I. Gomoyunov; N. Yu. Lukoyanov. The value and optimal strategies in a positional differential game for a neutral-type system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 86-98. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a6/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR

[3] Krasovskii N.N., Krasovskii A.N., Control under lack of information, Birkhäuser, Berlin etc., 1995, 322 pp. | MR

[4] Hale J.K., Cruz M.A., “Existence, uniqueness and continuous dependence for hereditary systems”, Ann. Mat. Pura Appl., 85:1 (1970), 63–81 | DOI | MR | Zbl

[5] Akhmerov R.R., Kamenskii M.I., Potapov A.S., Rodkina A.E., Sadovskii B.N., “Teoriya uravnenii neitralnogo tipa”, Itogi nauki i tekhn. Ser. Mat. analiz, 19, VINITI, M., 1982, 55–126

[6] Hale J.K., Lunel S.M.V., Introduction to functional differential equations, Springer, NY, 1993, 447 pp. | DOI | MR | Zbl

[7] Lukoyanov N.Yu., Plaksin A.R., “Differentsialnye igry dlya sistem neitralnogo tipa: approksimatsionnaya model”, Tr. MIAN, 291:4 (2015), 202–214 | DOI | MR | Zbl

[8] Gomoyunov M.I., Lukoyanov N.Yu., Plaksin A.R., “Suschestvovanie tseny i sedlovoi tochki v pozitsionnykh differentsialnykh igrakh dlya sistem neitralnogo tipa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 101–112 | DOI

[9] Gomoyunov M.I., Plaksin A.R., “Ob osnovnom uravnenii differentsialnykh igr dlya sistem neitralnogo tipa”, Prikl. matematika i mekhanika, 82:6 (2018), 675–689 | DOI

[10] Lukoyanov N.Yu., Plaksin A.R., “K teorii pozitsionnykh differentsialnykh igr dlya sistem neitralnogo tipa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:3 (2019), 118–128 | DOI | MR

[11] Plaksin A.R., “Optimal positional strategies in differential games for neutral-type systems”, Dyn. Games Appl., 2024 | DOI

[12] Garnysheva G.G., Subbotin A.I., “Strategiya minimaksnogo pritselivaniya v napravlenii kvazigradienta”, Prikl. matematika i mekhanika, 58:4 (1994), 5–11 | MR | Zbl

[13] Subbotin A.I., Generalized solutions of first order PDEs: The dynamical optimization perspective, Birkhäuser, Boston, 1995, 314 pp. | DOI | MR

[14] Lukoyanov N.Yu., Funktsionalnye uravneniya Gamiltona–Yakobi i zadachi upravleniya s nasledstvennoi informatsiei, Izd-vo Ural. federal. un-ta, Ekaterinburg, 2011, 243 pp.

[15] Plaksin A.R., “Ob uravnenii Gamiltona — Yakobi — Aizeksa — Bellmana dlya sistem neitralnogo tipa”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 27:2 (2017), 222–237 | DOI | MR | Zbl

[16] Gomoyunov M.I., Lukoyanov N.Yu., “Minimaksnye resheniya uravnenii Gamiltona — Yakobi v zadachakh dinamicheskoi optimizatsii nasledstvennykh sistem”, Uspekhi mat. nauk, 79:2 (2024), 43–144 | DOI | MR

[17] Kim A.V., Functional differential equations. Application of $i$-smooth calculus, Springer, Dordrecht, 1999, 168 pp. | DOI | MR

[18] Plaksin A.R., “O minimaksnom reshenii funktsionalnykh uravnenii Gamiltona — Yakobi dlya sistem neitralnogo tipa”, Differents. uravneniya, 55:11 (2019), 1519–1527 | DOI | Zbl

[19] Plaksin A.R., “O minimaksnom reshenii uravnenii Gamiltona — Yakobi dlya sistem neitralnogo tipa: sluchai neodnorodnogo gamiltoniana”, Differents. uravneniya, 57:11 (2021), 1536–1545 | DOI | MR | Zbl

[20] Plaksin A.R., “Viscosity solutions of Hamilton–Jacobi equations for neutral-type systems”, Appl. Math. Optim., 88:1 (2023), 6, 29 pp. | DOI | MR | Zbl

[21] Gomoyunov M.I., Lukoyanov N.Yu., “O minimaksnom reshenii nasledstvennykh uravnenii Gamiltona — Yakobi dlya sistem neitralnogo tipa”, Uspekhi mat. nauk, 79:4 (478) (2024), 177–178 | DOI

[22] Zhou J., Viscosity solutions to first order path-dependent HJB equations, 2020, 25 pp., arXiv: 2004.02095

[23] Zhou J., “Viscosity solutions to first order path-dependent Hamilton-Jacobi-Bellman equations in Hilbert space”, Automatica, 142 (2022), 110347, 15 pp. | DOI | MR | Zbl

[24] Gomoyunov M.I., Lukoyanov N.Yu., Plaksin A.R., “Path-dependent Hamilton–Jacobi equations: the minimax solutions revised”, Appl. Math. Optim., 84, suppl. 1 (2021), S1087–S1117 | DOI | MR | Zbl

[25] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR