An optimal synthesis for a triple integrator with a state constraint
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 68-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The time-optimal problem of steering a triple integrator from an arbitrary point to the origin is considered under constraints on the input control and on one of the state variables. An optimal control is synthesized based on the maximum principle in the Dubovitskii–Milyutin form.
Keywords: control system, time optimality, state constraint, maximum principle, switching points, optimal synthesis.
Mots-clés : Lebesgue–Stieltjes measure
@article{TIMM_2024_30_3_a5,
     author = {E. Voronina and A. V. Dmitruk},
     title = {An optimal synthesis for a triple integrator with a state constraint},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {68--85},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a5/}
}
TY  - JOUR
AU  - E. Voronina
AU  - A. V. Dmitruk
TI  - An optimal synthesis for a triple integrator with a state constraint
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 68
EP  - 85
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a5/
LA  - ru
ID  - TIMM_2024_30_3_a5
ER  - 
%0 Journal Article
%A E. Voronina
%A A. V. Dmitruk
%T An optimal synthesis for a triple integrator with a state constraint
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 68-85
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a5/
%G ru
%F TIMM_2024_30_3_a5
E. Voronina; A. V. Dmitruk. An optimal synthesis for a triple integrator with a state constraint. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 68-85. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a5/

[1] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961, 392 pp. | MR

[2] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR

[3] Dmitruk A., Samylovskiy I., “Optimal synthesis in a time-optimal problem for the double integrator system with a linear state constraint”, J. Dyn. Contr. Syst., 29:1 (2023), 21–42 | DOI | MR | Zbl

[4] Feldbaum A.A., “O sinteze optimalnykh sistem s pomoschyu fazovogo prostranstva”, Avtomatika i telemekhanika, 16:2 (1955), 129–149 | MR

[5] Feldbaum A.A., Osnovy teorii avtomaticheskikh sistem, Nauka, M., 1966, 624 pp. | MR

[6] Pavlov A.A., Sintez releinykh sistem, optimalnykh po bystrodeistviyu, Nauka, M., 1966, 390 pp.

[7] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[8] Chernousko F.L., Shmatkov A.M., “Sintez optimalnogo bystrodeistviya v odnoi sisteme tretego poryadka”, Dokl. AN, 354:2 (1997), 174–177 | MR | Zbl

[9] Akulenko L.D., Kostin G.V., “Analiticheskii sintez upravleniya optimalnogo bystrodeistviya v sisteme tretego poryadka”, Prikl. matematika i mekhanika, 64:4 (2000), 532–544 | Zbl

[10] He Suqin , Hu Chuxiong, Zhu Yu, Tomizuka Masayoshi, “Time optimal control of triple integrator with input saturation and full state constraints”, Automatica, 122 (2020), 109240 | DOI | MR | Zbl

[11] Dubovitskii A.Ya., Milyutin A.A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zhurn. vychisl. matematiki i mat. fiziki, 5:3 (1965), 395–453 | MR

[12] Milyutin A.A., Dmitruk A.V., Osmolovskii N.P., Printsip maksimuma v optimalnom upravlenii, Mekhaniko-matematicheskii fakultet MGU, M., 2004, 73 pp.

[13] Dmitruk A.V., Osmolovskii N.P., “Variatsii tipa $v$-zameny vremeni v zadachakh s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:1 (2018), 76–92 | DOI | MR