Observation of an object opposed to the observer in the space $\mathbb{R}^2$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 45-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A course of action is proposed for an observer $f$ tracking an object $t$ that moves along a shortest trajectory $\mathcal T$ enveloping a family $\{G_i\}$ of convex sets. The object can send a dangerous high-speed mini-object in the direction of the observer. Observation methods depend on the geometric properties of the trajectory $\mathcal T$, i.e., on the location of the segments and convex arcs that constitute it. The aim of the observer is to track the motion of the object along the largest possible part of the trajectory $\mathcal T$.
Mots-clés : navigation, observer
Keywords: optimal trajectory, moving object, video sensor, video finder.
@article{TIMM_2024_30_3_a3,
     author = {V. I. Berdyshev},
     title = {Observation of an object opposed to the observer in the space $\mathbb{R}^2$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {45--52},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a3/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - Observation of an object opposed to the observer in the space $\mathbb{R}^2$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 45
EP  - 52
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a3/
LA  - ru
ID  - TIMM_2024_30_3_a3
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T Observation of an object opposed to the observer in the space $\mathbb{R}^2$
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 45-52
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a3/
%G ru
%F TIMM_2024_30_3_a3
V. I. Berdyshev. Observation of an object opposed to the observer in the space $\mathbb{R}^2$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 45-52. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a3/

[1] Clarcson J.A., “Uniformly convex spaces”, Trans. Amer. Math. Soc., 40:3 (1936), 396–414 | DOI | MR

[2] Lyu V., “Metody planirovaniya puti v srede s prepyatstviyami (obzor)”, Matematika i mat. modelirovanie, 2018, no. 1, 15–58 | DOI