Some questions related to the extension of reachability problems in the class of finitely additive measures
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 293-313 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Questions related to the extension of reachability problems and aimed at the construction of attraction sets, which are asymptotic analogs of reachable sets in the situation of successive relaxation of the constraint system, are studied. Finitely additive measures with the property of weak absolute continuity with respect to a fixed measure are used as generalized elements; the measure (in the case of control problems) is usually defined as the restriction of the Lebesgue measure to some family of measurable sets. The properties of relaxed reachability problems and the connection of their extensions with attraction sets in the class of usual solutions (controls), as well as the properties of these sets that have the sense of stability when the constraints are relaxed and asymptotic insensitivity when some “part” of the constraints is relaxed, are studied.
Keywords: finitely additive measure, attraction set, weak absolute continuity.
@article{TIMM_2024_30_3_a21,
     author = {A. G. Chentsov},
     title = {Some questions related to the extension of reachability problems in the class of finitely additive measures},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {293--313},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a21/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Some questions related to the extension of reachability problems in the class of finitely additive measures
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 293
EP  - 313
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a21/
LA  - ru
ID  - TIMM_2024_30_3_a21
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Some questions related to the extension of reachability problems in the class of finitely additive measures
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 293-313
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a21/
%G ru
%F TIMM_2024_30_3_a21
A. G. Chentsov. Some questions related to the extension of reachability problems in the class of finitely additive measures. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 293-313. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a21/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 620 pp.

[2] Gamkrelidze R.V., Osnovy optimalnogo upravleniya, Izd-vo Tbilisskogo un-ta, Tbilisi, 1975, 230 pp.

[3] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[4] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp.

[5] Khalanai A., Veksler D., Kachestvennaya teoriya impulsnykh sistem, nauch. izd. Per. s rumyn., Mir, M., 1971, 309 pp.

[6] Zavalischin S.T., Sesekin A.N., Impulsnye protsessy. Modeli i prilozheniya, Nauka, M., 1991, 256 pp. | MR

[7] Dykhta V.A., Samsonyuk O.N., Optimalnoe impulsnoe upravlenie s prilozheniyami, Fizmatlit, M., 2003, 256 pp.

[8] Miller B.M., Rubinovich E.Ya., Optimizatsiya dinamicheskikh sistem s impulsnymi upravleniyami, Nauka, M., 2005, 429 pp.

[9] Chentsov A.G., Konechno-additivnye mery i rasshireniya abstraktnykh zadach upravleniya, Sovremennaya matematika i ee prilozheniya. Optimalnoe upravlenie, 17, Izd-vo In-ta kibernetiki AN Gruzii, Tbilisi, 2004

[10] Chentsov A.G., Asymptotic attainability, Kluwer Acad. Publ., Dordrecht, 1997, 322 pp. | DOI | MR | Zbl

[11] Chentsov A.G., Morina S.I., Extensions and relaxations, Kluwer Acad. Publ., Dordrecht, 2002, 408 pp. | DOI | MR | Zbl

[12] Bhaskara Rao K. P. S., Bhaskara Rao M., Theory of charges. A study of finitely additive measures, Acad. Press, NY, 1983, 315 pp. | MR | Zbl

[13] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp.

[14] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.

[15] Kelli Dzh.L., Obschaya topologiya, Nauka, M., 1981, 298 pp.

[16] Chentsov A.G., Elementy konechno-additivnoi teorii mery, I, UGTU-UPI, Ekaterinburg, 2009, 388 pp.

[17] Chentsov A.G., “Rasshirenie abstraktnykh zadach o dostizhimosti: nesekventsialnaya versiya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13:2 (2007), 184–217

[18] Danford N., Shvarts Dzh., Lineinye operatory: Obschaya teoriya, IL, M., 1962, 895 pp.

[19] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp.

[20] Chentsov A. G., Elementy konechno-additivnoi teorii mery, II, UGTU-UPI, Ekaterinburg, 2010

[21] Chentsov A. G., Prilozheniya teorii mery k zadacham upravleniya, Sr.-Ural. knizhnoe izd-vo, Sverdlovsk, 1985, 126 pp.

[22] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR