On an adjoint trajectory in infinite-horizon control problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 274-292 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An optimal control problem is considered on an infinite interval with a weakly overtaking optimality criterion. In such problems, the necessary (D.V. Khlopin, 2023) condition at infinity for such a criterion, compatible with the maximum principle, can give a continuum of solutions of the adjoint system. On the other hand, the Cauchy type formula proposed by A.V. Kryazhimsky and S.M. Aseev (2004) always identifies exactly one adjoint trajectory, which often satisfies the maximum principle within the framework of the problem with a free right end. That is why we find asymptotic assumptions on the system that guarantee the compatibility of the Pontryagin maximum principle and this adjoint trajectory (or its modifications for problems with asymptotic terminal constraints). The asymptotic assumptions obtained in this work develop the recent results by D. V. Khlopin (2018, 2023), S.M. Aseev and V.M. Veliov (2019), and S.M. Aseev (2023).
Keywords: optimal control, Pontryagin's maximum principle, asymptotic endpoint constraint, infinite horizon, uniqueness of the adjoint trajectory, transversality condition at infinity, weakly overtaking optimality.
@article{TIMM_2024_30_3_a20,
     author = {D. V. Khlopin},
     title = {On an adjoint trajectory in infinite-horizon control problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {274--292},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a20/}
}
TY  - JOUR
AU  - D. V. Khlopin
TI  - On an adjoint trajectory in infinite-horizon control problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 274
EP  - 292
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a20/
LA  - ru
ID  - TIMM_2024_30_3_a20
ER  - 
%0 Journal Article
%A D. V. Khlopin
%T On an adjoint trajectory in infinite-horizon control problems
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 274-292
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a20/
%G ru
%F TIMM_2024_30_3_a20
D. V. Khlopin. On an adjoint trajectory in infinite-horizon control problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 274-292. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a20/

[1] Halkin H., “Necessary conditions for optimal control problems with infinite horizons”, Econometrica, 42 (1974), 267–272 | DOI | MR | Zbl

[2] Khlopin D., “Necessary conditions in infinite-horizon control problems that need no asymptotic assumptions”, Set-Valued and Variational Analysis, 31:1 (2023), 8 | DOI | MR | Zbl

[3] Aseev S.M., Kryazhimskii A.V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257 (2007), 3–271

[4] Aseev S.M., Velov V.M., “Drugoi vzglyad na printsip maksimuma dlya zadach optimalnogo upravleniya s beskonechnym gorizontom v ekonomike”, Uspekhi mat. nauk, 74:6(450) (2019), 3–54 | DOI | MR | Zbl

[5] Khlopin, D., “A maximum principle for one infinite horizon impulsive control problem”, IFAC-PapersOnLine, 51 (2018), 213–218 | DOI

[6] Aseev S.M., “The Pontryagin maximum principle for optimal control problem with an asymptotic endpoint constraint under weak regularity assumptions”, J. Math. Sci., 270:4 (2023), 531–546, N.Y. | DOI | MR | Zbl

[7] Mordukhovich B.S., Variational analysis and applications, Springer, Cham, 2018, 622 pp. | MR | Zbl

[8] Rockafellar R.T., Wets R.J.B., Variational analysis, Springer-Verlag, Berlin, 2009, 736 pp. | MR | Zbl

[9] Carlson D.A., “Uniformly overtaking and weakly overtaking optimal solutions in infinite-horizon optimal control: when optimal solutions are agreeable”, J. Optim. Theory Appl., 64 (1990), 55–69 | DOI | MR | Zbl

[10] Bogusz D., “On the existence of a classical optimal solution and of an almost strongly optimal solution for an infinite-horizon control problem”, J. Optim. Theory Appl., 156 (2013), 650–682 | DOI | MR | Zbl

[11] Clarke F., Functional analysis, calculus of variations and optimal control, Springer, London, 2013, 591 pp. | DOI | MR | Zbl

[12] Khlopin D., “Necessity of vanishing shadow price in infinite horizon control problems”, J. Dyn. Con. Sys., 19 (2013), 519–552 | DOI | MR | Zbl

[13] Khlopin D., “Necessity of limiting co-state arc in {Bolza-type} infinite horizon problem”, Optimization, 64 (2015), 2417–2440 | DOI | MR | Zbl

[14] Ledyaev Yu.S., Triman D.S., “Sub- i supergradienty ogibayuschikh, polunepreryvnykh zamykanii i predelov posledovatelnostei funktsii”, Uspekhi mat. nauk, 67:2(404) (2012), 157–186 | DOI | MR | Zbl

[15] Pérez-Aros P., “Subdifferential formulae for the supremum of an arbitrary family of functions”, SIAM J. Control Optim., 29 (2019), 1714–1743 | DOI | MR

[16] Khlopin D.V., “On two-sided unidirectional mean value inequality in a Fréchet smooth space”, Ural Math. J., 9:2 (2023), 132–140 | DOI | MR

[17] Aseev S.M., Kryazhimskii A.V., “The {Pontryagin} {Maximum} {Principle} and transversality conditions for a class of optimal control problems with infinite time horizons”, SIAM J. Control Optim., 43 (2004), 1094–1119 | DOI | MR | Zbl

[18] Seierstad A., “Necessary conditions for nonsmooth, infinite-horizon optimal control problems”, J. Optim. Theory Appl., 103 (1999), 201–230 | DOI | MR

[19] Shell K., “Applications of Pontryagin's maximum principle to economics”, Mathematical Systems Theory and Economics I/II, Springer, Berlin; Heidelberg, 1969 | DOI | MR

[20] Belyakov A.O., Necessary conditions for infinite horizon optimal control problems revisited, 2017, 19 pp., arXiv: 1512.01206

[21] Belyakov A.O., “O dostatochnykh usloviyakh optimalnosti dlya zadach optimalnogo upravleniya s beskonechnym gorizontom vremeni”, Tr. MIAN, 308 (2020), 65–75 | DOI | Zbl

[22] Mordukhovich B.S., Nghia T., “Subdifferentials of nonconvex supremum functions and their applications to semi-infinite and infinite programs with lipschitzian data”, SIAM J. Control Optim., 23 (2013), 406–431 | DOI | MR | Zbl

[23] Kamihigashi T., “Necessity of transversality conditions for infinite horizon problems”, Econometrica, 69 (2001), 995–1012 | DOI | MR | Zbl

[24] Aseev S.M., Besov K.O., Kryazhimskii A.V., “Zadachi optimalnogo upravleniya na beskonechnom intervale vremeni v ekonomike”, Uspekhi mat. nauk, 67:2(404) (2012), 3–64 | DOI | MR | Zbl

[25] Aseev S.M., “Necessary conditions for the optimality and sustainability of solutions in infinite-horizon optimal control problems”, Mathematics, 11 (2023), 38–51 | DOI