@article{TIMM_2024_30_3_a20,
author = {D. V. Khlopin},
title = {On an adjoint trajectory in infinite-horizon control problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {274--292},
year = {2024},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a20/}
}
D. V. Khlopin. On an adjoint trajectory in infinite-horizon control problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 274-292. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a20/
[1] Halkin H., “Necessary conditions for optimal control problems with infinite horizons”, Econometrica, 42 (1974), 267–272 | DOI | MR | Zbl
[2] Khlopin D., “Necessary conditions in infinite-horizon control problems that need no asymptotic assumptions”, Set-Valued and Variational Analysis, 31:1 (2023), 8 | DOI | MR | Zbl
[3] Aseev S.M., Kryazhimskii A.V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257 (2007), 3–271
[4] Aseev S.M., Velov V.M., “Drugoi vzglyad na printsip maksimuma dlya zadach optimalnogo upravleniya s beskonechnym gorizontom v ekonomike”, Uspekhi mat. nauk, 74:6(450) (2019), 3–54 | DOI | MR | Zbl
[5] Khlopin, D., “A maximum principle for one infinite horizon impulsive control problem”, IFAC-PapersOnLine, 51 (2018), 213–218 | DOI
[6] Aseev S.M., “The Pontryagin maximum principle for optimal control problem with an asymptotic endpoint constraint under weak regularity assumptions”, J. Math. Sci., 270:4 (2023), 531–546, N.Y. | DOI | MR | Zbl
[7] Mordukhovich B.S., Variational analysis and applications, Springer, Cham, 2018, 622 pp. | MR | Zbl
[8] Rockafellar R.T., Wets R.J.B., Variational analysis, Springer-Verlag, Berlin, 2009, 736 pp. | MR | Zbl
[9] Carlson D.A., “Uniformly overtaking and weakly overtaking optimal solutions in infinite-horizon optimal control: when optimal solutions are agreeable”, J. Optim. Theory Appl., 64 (1990), 55–69 | DOI | MR | Zbl
[10] Bogusz D., “On the existence of a classical optimal solution and of an almost strongly optimal solution for an infinite-horizon control problem”, J. Optim. Theory Appl., 156 (2013), 650–682 | DOI | MR | Zbl
[11] Clarke F., Functional analysis, calculus of variations and optimal control, Springer, London, 2013, 591 pp. | DOI | MR | Zbl
[12] Khlopin D., “Necessity of vanishing shadow price in infinite horizon control problems”, J. Dyn. Con. Sys., 19 (2013), 519–552 | DOI | MR | Zbl
[13] Khlopin D., “Necessity of limiting co-state arc in {Bolza-type} infinite horizon problem”, Optimization, 64 (2015), 2417–2440 | DOI | MR | Zbl
[14] Ledyaev Yu.S., Triman D.S., “Sub- i supergradienty ogibayuschikh, polunepreryvnykh zamykanii i predelov posledovatelnostei funktsii”, Uspekhi mat. nauk, 67:2(404) (2012), 157–186 | DOI | MR | Zbl
[15] Pérez-Aros P., “Subdifferential formulae for the supremum of an arbitrary family of functions”, SIAM J. Control Optim., 29 (2019), 1714–1743 | DOI | MR
[16] Khlopin D.V., “On two-sided unidirectional mean value inequality in a Fréchet smooth space”, Ural Math. J., 9:2 (2023), 132–140 | DOI | MR
[17] Aseev S.M., Kryazhimskii A.V., “The {Pontryagin} {Maximum} {Principle} and transversality conditions for a class of optimal control problems with infinite time horizons”, SIAM J. Control Optim., 43 (2004), 1094–1119 | DOI | MR | Zbl
[18] Seierstad A., “Necessary conditions for nonsmooth, infinite-horizon optimal control problems”, J. Optim. Theory Appl., 103 (1999), 201–230 | DOI | MR
[19] Shell K., “Applications of Pontryagin's maximum principle to economics”, Mathematical Systems Theory and Economics I/II, Springer, Berlin; Heidelberg, 1969 | DOI | MR
[20] Belyakov A.O., Necessary conditions for infinite horizon optimal control problems revisited, 2017, 19 pp., arXiv: 1512.01206
[21] Belyakov A.O., “O dostatochnykh usloviyakh optimalnosti dlya zadach optimalnogo upravleniya s beskonechnym gorizontom vremeni”, Tr. MIAN, 308 (2020), 65–75 | DOI | Zbl
[22] Mordukhovich B.S., Nghia T., “Subdifferentials of nonconvex supremum functions and their applications to semi-infinite and infinite programs with lipschitzian data”, SIAM J. Control Optim., 23 (2013), 406–431 | DOI | MR | Zbl
[23] Kamihigashi T., “Necessity of transversality conditions for infinite horizon problems”, Econometrica, 69 (2001), 995–1012 | DOI | MR | Zbl
[24] Aseev S.M., Besov K.O., Kryazhimskii A.V., “Zadachi optimalnogo upravleniya na beskonechnom intervale vremeni v ekonomike”, Uspekhi mat. nauk, 67:2(404) (2012), 3–64 | DOI | MR | Zbl
[25] Aseev S.M., “Necessary conditions for the optimality and sustainability of solutions in infinite-horizon optimal control problems”, Mathematics, 11 (2023), 38–51 | DOI