Controllability of linear systems of variable structure using a dynamic controller
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 30-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of controllability of linear systems of variable structure using a dynamic controller is considered. The notion of complete controllability of such systems using a dynamic controller is formulated. Conditions for the complete controllability of composite and stage-by-stage changing linear nonstationary systems using a dynamic controller are obtained. It is shown that a stage-by-stage changing linear stationary system is completely controllable using a dynamic controller if and only if the system is completely controllable and completely observable. The criterion of complete controllability is explicitly expressed in terms of the controllability and observability matrices of a stage-by-stage changing linear stationary system and is comparable with the known condition for a conventional system.
Keywords: system of variable structure, composite system, stage-by-stage changing system, controllability, observability, dynamic controller.
@article{TIMM_2024_30_3_a2,
     author = {V. R. Barseghyan},
     title = {Controllability of linear systems of variable structure using a dynamic controller},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {30--44},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a2/}
}
TY  - JOUR
AU  - V. R. Barseghyan
TI  - Controllability of linear systems of variable structure using a dynamic controller
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 30
EP  - 44
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a2/
LA  - ru
ID  - TIMM_2024_30_3_a2
ER  - 
%0 Journal Article
%A V. R. Barseghyan
%T Controllability of linear systems of variable structure using a dynamic controller
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 30-44
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a2/
%G ru
%F TIMM_2024_30_3_a2
V. R. Barseghyan. Controllability of linear systems of variable structure using a dynamic controller. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 30-44. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a2/

[1] Kalman R., “Ob obschei teorii sistem upravleniya”, Tr. I Kongressa IFAK, v. 2, AN SSSR, M., 1961, 521–547

[2] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp.

[3] Ignatenko V.V., Krakhotko V.V., Razmyslovich G.P., “K upravlyaemosti lineinykh sistem deskriptornymi regulyatorami”, Tr. BGTU, Ser. 3, 2017, no. 1, 5–7

[4] Razmyslovich G.P., Krakhotko V.V., “Upravlyaemost lineinykh sistem so mnogimi zapazdyvaniyami po upravleniyu s pomoschyu differentsialnykh regulyatorov”, Zhurn. Belorusskogo gos. un-ta. Matematika. Informatika, 2018, no. 3, 82–85 | MR | Zbl

[5] Ignatenko V.V., “Upravlyaemost dinamicheskikh sistem s pomoschyu regulyatora”, Vestn. BGU, Ser. 1, 1976, 56–58 | MR

[6] Gabrielyan M.S., “Programmnye konstruktsii dlya igrovykh zadach pri m tselevykh mnozhestvakh i menyayuschikhsya sistem”, Uchenye zapiski EGU. Fizika i matematika, 1985, no. 3, 22–32 | MR

[7] Gabrielyan M.S., Barsegyan V.R., “Stokhasticheskii programmnyi sintez dlya poetapno menyayuschikhsya lineinykh sistem”, Uchenye zapiski EGU. Fizika i matematika, 1994, no. 2, 29–39 | MR | Zbl

[8] Gabrielyan M.S., Chilingaryan A.S., “Upravlenie s povodyrem v igrovoi zadache sblizheniya s $m$ tselevymi mnozhestvami dlya sistem s peremennoi dinamikoi”, Uchenye zapiski EGU. Fizika i matematika, 2008, no. 1, 40–46 | Zbl

[9] Teoriya sistem s peremennoi strukturoi, ed. pod red. S.V. Emelyanova, Nauka, M., 1970, 592 pp. | MR

[10] Emelyanov S.V., Korovin S.K., Novye tipy obratnoi svyazi. Upravlenie pri neopredelennosti, Nauka, M., 1997, 352 pp. | MR

[11] Barsegyan V.R., Upravlenie sostavnykh dinamicheskikh sistem i sistem s mnogotochechnymi promezhutochnymi usloviyami, Nauka, M., 2016, 230 pp.

[12] Barseghyan V.R., “On the controllability and observability of linear dynamic systems with variable structure”, Proc. of 2016 International Conf. “Stability and Oscillations of Nonlinear Control Systems”, (Pyatnitskiy's Conf.)STAB 2016 (Moscow, 2016), 2016, 1–3 | DOI

[13] Barseghyan V.R., Barseghyan T.V., “On an approach to the problems of control of dynamic system with nonseparated multipoint intermediate conditions”, Automation and Remote Control, 76:4 (2015), 549–559 | DOI | MR | Zbl

[14] Barsegyan V.R., Simonyan T.A., Barsegyan T.V., “O zadache optimalnoi stabilizatsii odnoi sistemy lineinykh nagruzhennykh differentsialnykh uravnenii”, Izv. Irkutskogo gos. un-ta. Matematika, 27 (2019), 71–79 | DOI | MR | Zbl

[15] Barseghyan V., Solodusha S., “On the optimal control problem for vibrations of the rod/string consisting of two non-homogeneous sections with the condition at an intermediate time”, Mathematics, 10 (2022), 4444 | DOI

[16] Barseghyan V., Solodusha S., “A model of the control problem of the thermal effect of a laser beam on a two-layer biomaterial”, Mathematics, 12 (2024), 374 | DOI | MR

[17] Zabello L.E., “Ob upravlyaemosti lineinykh nestatsionarnykh sistem”, Avtomatika i telemekhanika, 1973, no. 8, 13–19 | Zbl

[18] Johansson M., Piecewise linear control systems, Springer, NY, 2003, 220 pp. | MR | Zbl

[19] Hong Shi, Guangming Xie., “Controllability and observability criteria for linear piecewise constant impulsive systems”, J. Appl. Math., 2012 (2012), 82040 | DOI | MR

[20] Dengguo Xu., “Controllability and observability of a class of piecewise linear impulsive control systems”, Advances in Computer, Communication, Control and Automation, Ser. Lecture Notes in Electrical Engineering, 121, 2011, 321–328 | DOI

[21] Gantmakher F.R., Teoriya matrits, 5-e izd., Fizmatlit, M., 2004, 560 pp. | MR

[22] Prasolov V.V., Zadachi i teoremy lineinoi algebry, 2-e izd., Nauka, M., 2008, 537 pp.