Multiple capture of an evader in the linear pursuit problem on timescales
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 217-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The linear problem of pursuing one evader by a group of pursuers is considered in a finite-dimensional Euclidean space. In a given timescale, the problem is described by a linear system with a simple matrix. The set of admissible controls for each participant is the unit ball centered at the origin. The terminal sets are given convex compact sets. The pursuers use counter-strategies based on information about the initial positions and control history of the evader. Sufficient conditions for the capture of the evader by a given number of pursuers are obtained in terms of the initial positions and parameters of the game. Sufficient evasion conditions are obtained for discrete time scales.
Keywords: differential game, group pursuit, evader, pursuer, multiple capture, timescale.
@article{TIMM_2024_30_3_a16,
     author = {E. S. Mozhegova and N. N. Petrov},
     title = {Multiple capture of an evader in the linear pursuit problem on timescales},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {217--228},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a16/}
}
TY  - JOUR
AU  - E. S. Mozhegova
AU  - N. N. Petrov
TI  - Multiple capture of an evader in the linear pursuit problem on timescales
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 217
EP  - 228
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a16/
LA  - ru
ID  - TIMM_2024_30_3_a16
ER  - 
%0 Journal Article
%A E. S. Mozhegova
%A N. N. Petrov
%T Multiple capture of an evader in the linear pursuit problem on timescales
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 217-228
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a16/
%G ru
%F TIMM_2024_30_3_a16
E. S. Mozhegova; N. N. Petrov. Multiple capture of an evader in the linear pursuit problem on timescales. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 217-228. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a16/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Pontryagin L.S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988, 575 pp.

[3] Chikrii A.A., Konfliktno upravlyaemye protsessy, Naukova dumka, Kiev, 1992, 384 pp.

[4] Grigorenko N.L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990, 198 pp.

[5] Samatov B.T., “Zadacha presledovaniya-ubeganiya pri integralno-geometricheskikh ogranicheniyakh na upravleniya presledovatelya ”, Avtomatika i telemekhanika, 2013, no. 7, 17–28 | Zbl

[6] Chikrii A.A., Chikrii G.Ts., “Matrichnye razreshayuschie funktsii v igrovykh zadachakh dinamiki ”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 324–333

[7] Aulbach B., Hilger S., “Linear dynamic processes with inhomogeneous time scale”, Nonlinear dynamics and quantum dynamical systems, Contributions to the international seminar ISAM-90, Gaussig (GDR), 59, eds. G.A. Leonov, V. Reitmann, W. Timmermann, Akademie-Verlag, Berlin, 1990, 9–20 | DOI | MR

[8] Hilger S., “Analysis on measure chains – a unified approach to continuous and discrete calculus”, Results in Mathematics, 18 (1990), 18–56 | DOI | MR | Zbl

[9] Benchohra M., Henderson J., Ntouyas S., Impulsive differential equations and Inclusions, Hindawi Publ., NY, 2006, 381 pp. | DOI | MR | Zbl

[10] Bohner M., Peterson A., Advances in dynamic equations on time scales, Birkhäuser, Boston, 2003, 348 pp. | DOI | MR | Zbl

[11] Martins N., Torres D., “Necessary conditions for linear noncooperative $N$-player delta differential games on time scales”, Discus. Math., Differ. Inclus., Control and Optimiz., 31:1 (2011), 23–37 | DOI | MR | Zbl

[12] Petrov N.N., “Zadacha prostogo gruppovogo presledovaniya s fazovymi ogranicheniyami vo vremennykh shkalakh”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 30:2 (2020), 249–258 | DOI | MR | Zbl

[13] Petrov N.N., “Multiple capture of a given number of evaders in the problem of simple pursuit with phase restrictions on timescales”, Dyn. Games Appl., 12:2 (2022), 632–642 | DOI | MR | Zbl

[14] Mozhegova E.S., “Ob odnoi zadache gruppovogo presledovaniya vo vremennykh shkalakh”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 33:1 (2023), 130–140 | DOI | MR | Zbl

[15] Chikrii A.V., “O mnogokratnoi poimke ubegayuschego”, Teoriya optimalnikh rishen, 2009, no. 8, 56–60

[16] Cabada A., Vivero D.R., “Expression of the Lebesgue $\Delta$-integral on time scales as a usual Lebesgue integral; application to the calculus of $\Delta$-antiderivatives”, Math. Comp. Modelling, 43:1–2 (2006), 194–207 | DOI | MR | Zbl