On the error of calculating the attainable values of objective functionals for control systems with continuous and discrete times
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 207-216 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a wide class of linear systems with aftereffect, the problem of attaining target values by a given system is considered under polyhedral constraints on the control. The aim of the control is set by a finite system of linear functionals $\ell_i$, $i=1,\ldots,N$; this is why the more precise term "$\ell$-attainability" is used in the paper. The general form of the functionals makes it possible to consider terminal, multipoint, and integral target conditions and their linear combinations as special cases. For the class of systems under consideration, the problem of $\ell$-attainability is reduced to a variant of the moment problem. One of the features of this problem is the account of random disturbances in elements of the moment matrix. These disturbances result in the distortion of the lower and upper (by inclusion) approximations of the $\ell$-attainable set. To obtain a guaranteed result, special procedures are proposed, which allow one to build open-loop controls with the following properties. First, the implementation of such controls produces trajectories on which the objective functionals take attainable values. Second, the calculation of attainable values is accompanied by guaranteed estimates of the errors associated with disturbances of elements of the moment matrix. In this case, each coordinate of the vector of target values corresponds not only to an interval of feasible values but also to the corresponding probability density of their distribution. The latter property allows one to give probabilistic characteristics to the errors. Keywords: control problems, continuous–discrete systems with aftereffect, control with constraints, attainable sets.
Keywords: control problems, continuous–discrete systems with aftereffect, control with constraints, attainable sets.
@article{TIMM_2024_30_3_a15,
     author = {V. P. Maksimov},
     title = {On the error of calculating the attainable values of objective functionals for control systems with continuous and discrete times},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {207--216},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a15/}
}
TY  - JOUR
AU  - V. P. Maksimov
TI  - On the error of calculating the attainable values of objective functionals for control systems with continuous and discrete times
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 207
EP  - 216
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a15/
LA  - ru
ID  - TIMM_2024_30_3_a15
ER  - 
%0 Journal Article
%A V. P. Maksimov
%T On the error of calculating the attainable values of objective functionals for control systems with continuous and discrete times
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 207-216
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a15/
%G ru
%F TIMM_2024_30_3_a15
V. P. Maksimov. On the error of calculating the attainable values of objective functionals for control systems with continuous and discrete times. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 207-216. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a15/

[1] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp.

[2] Althoff M., Freshe G., Girard A., “Set propagation techniques for reachability analysis”, Annual Review of Control, Robotics, and Autonomous Systems, 4 (2021), 369–395 | DOI

[3] Kostousova E.K., “On polyhedral estimation of reachable sets in the “extended” space for discrete-time systems with uncertain matrices and integral constraints”, Proc. Steklov Inst. Math. (Suppl.), 313, suppl. 1, 2021, S140–S154 | DOI | MR | Zbl

[4] Sartipizadeh H., Vinod A.P., Açikmeşe B., Oishi M., “Voronoi partition-based scenario reduction for fast sampling-based stochastic reachability computation of linear systems”, Proc. 2019 American Control Conference (ACC), IEEE, 2019, 37–44 | DOI

[5] Allen R.E., Clark A.A., Starek J.A., Pavone M., “A machine learning approach for real-time reachability analysis”, IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems, 2014, 2202–2208 | DOI

[6] Zimovets A.A., Matviichuk A.R., “Parallelnyi algoritm priblizhennogo postroeniya mnozhestv dostizhimosti nelineinykh upravlyaemykh sistem”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuter. nauki, 25:4 (2015), 459–472 | Zbl

[7] Zimovets A.A., Matviichuk A.R., “Setochnyi algoritm postroeniya mnozhestv dostizhimosti s uluchshennoi approksimatsiei granitsy”, Chelyab. fiz.-mat. zhurn., 6:1 (2021), 9–21 | DOI | MR | Zbl

[8] Lew T., Pavone M., “Sampling-based reachability analysis: a random set theory approach with adversarial sampling”, Proc. of the 2020 Conf. on Robot Learning, Proc. of Machine Learning Research, 155, eds. Jens Kober, Fabio Ramos, Claire Tomlin, 2021, 2055–2070

[9] Zykov I.V., “Priblizhennoe vychislenie mnozhestv dostizhimosti lineinykh upravlyaemykh sistem pri raznotipnykh ogranicheniyakh na upravlenie”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 60 (2022), 16–33 | DOI | Zbl

[10] Ushakov V.N., Ershov A.A., “Mnozhestva dostizhimosti i integralnye voronki zavisyaschikh ot parametra differentsialnykh vklyuchenii”, Dokl. RAN. Matematiki, informatika, protsessy upravleniya, 499 (2021), 49–53 | DOI | Zbl

[11] Meyer P-J., Devonport A., Arcak M., “Tira: toolbox for interval reachability analysis”, Proc. of the 22nd ACM Internat. Conf. on Hybrid Systems (Computation and Control, 2019), 2019, 224–229 | DOI | MR

[12] Immler F., Althoff M., Benet L., et al., “ARCH-COMP19 category report: Continuous and hybrid systems with nonlinear dynamics”, 6th Internat. Workshop on Applied Verification of Continuous and Hybrid Systems, EPiC Ser. in Computing, 61, 2019, 41–61 | DOI

[13] Maksimov V.P., “On the $\ell$-attainability sets of continuous discrete functional differential systems”, IFAC PapersOnLine, 51:32 (2018), 310–313 | DOI

[14] Krein M.G., Nudelman A.A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973, 552 pp. | MR

[15] Maksimov V.P., “The structure of the Cauchy operator to a linear continuous-discrete functional differential system with aftereffect and some properties of its components”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki., 29:1 (2019), 40–51 | DOI | MR | Zbl

[16] Maksimov V.P., “Nepreryvno-diskretnye dinamicheskie modeli”, Ufim. mat. zhurn., 13:3 (2021), 97–106 | DOI | Zbl

[17] Maksimov V.P., “O vnutrennikh otsenkakh mnozhestv dostizhimosti dlya nepreryvno-diskretnykh sistem s diskretnoi pamyatyu”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:3 (2021), 141–151 | DOI | MR

[18] Voevodin V.V., Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977, 305 pp. | MR

[19] Maksimov V.P., “K veroyatnostnomu opisaniyu ansamblya traektorii nepreryvno-diskretnoi sistemy upravleniya s nepolnoi informatsiei”, Vestn. rossiiskikh un-v. Matematika, 28:143 (2023), 256–267 | DOI