@article{TIMM_2024_30_3_a15,
author = {V. P. Maksimov},
title = {On the error of calculating the attainable values of objective functionals for control systems with continuous and discrete times},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {207--216},
year = {2024},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a15/}
}
TY - JOUR AU - V. P. Maksimov TI - On the error of calculating the attainable values of objective functionals for control systems with continuous and discrete times JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 207 EP - 216 VL - 30 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a15/ LA - ru ID - TIMM_2024_30_3_a15 ER -
%0 Journal Article %A V. P. Maksimov %T On the error of calculating the attainable values of objective functionals for control systems with continuous and discrete times %J Trudy Instituta matematiki i mehaniki %D 2024 %P 207-216 %V 30 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a15/ %G ru %F TIMM_2024_30_3_a15
V. P. Maksimov. On the error of calculating the attainable values of objective functionals for control systems with continuous and discrete times. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 207-216. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a15/
[1] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp.
[2] Althoff M., Freshe G., Girard A., “Set propagation techniques for reachability analysis”, Annual Review of Control, Robotics, and Autonomous Systems, 4 (2021), 369–395 | DOI
[3] Kostousova E.K., “On polyhedral estimation of reachable sets in the “extended” space for discrete-time systems with uncertain matrices and integral constraints”, Proc. Steklov Inst. Math. (Suppl.), 313, suppl. 1, 2021, S140–S154 | DOI | MR | Zbl
[4] Sartipizadeh H., Vinod A.P., Açikmeşe B., Oishi M., “Voronoi partition-based scenario reduction for fast sampling-based stochastic reachability computation of linear systems”, Proc. 2019 American Control Conference (ACC), IEEE, 2019, 37–44 | DOI
[5] Allen R.E., Clark A.A., Starek J.A., Pavone M., “A machine learning approach for real-time reachability analysis”, IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems, 2014, 2202–2208 | DOI
[6] Zimovets A.A., Matviichuk A.R., “Parallelnyi algoritm priblizhennogo postroeniya mnozhestv dostizhimosti nelineinykh upravlyaemykh sistem”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuter. nauki, 25:4 (2015), 459–472 | Zbl
[7] Zimovets A.A., Matviichuk A.R., “Setochnyi algoritm postroeniya mnozhestv dostizhimosti s uluchshennoi approksimatsiei granitsy”, Chelyab. fiz.-mat. zhurn., 6:1 (2021), 9–21 | DOI | MR | Zbl
[8] Lew T., Pavone M., “Sampling-based reachability analysis: a random set theory approach with adversarial sampling”, Proc. of the 2020 Conf. on Robot Learning, Proc. of Machine Learning Research, 155, eds. Jens Kober, Fabio Ramos, Claire Tomlin, 2021, 2055–2070
[9] Zykov I.V., “Priblizhennoe vychislenie mnozhestv dostizhimosti lineinykh upravlyaemykh sistem pri raznotipnykh ogranicheniyakh na upravlenie”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 60 (2022), 16–33 | DOI | Zbl
[10] Ushakov V.N., Ershov A.A., “Mnozhestva dostizhimosti i integralnye voronki zavisyaschikh ot parametra differentsialnykh vklyuchenii”, Dokl. RAN. Matematiki, informatika, protsessy upravleniya, 499 (2021), 49–53 | DOI | Zbl
[11] Meyer P-J., Devonport A., Arcak M., “Tira: toolbox for interval reachability analysis”, Proc. of the 22nd ACM Internat. Conf. on Hybrid Systems (Computation and Control, 2019), 2019, 224–229 | DOI | MR
[12] Immler F., Althoff M., Benet L., et al., “ARCH-COMP19 category report: Continuous and hybrid systems with nonlinear dynamics”, 6th Internat. Workshop on Applied Verification of Continuous and Hybrid Systems, EPiC Ser. in Computing, 61, 2019, 41–61 | DOI
[13] Maksimov V.P., “On the $\ell$-attainability sets of continuous discrete functional differential systems”, IFAC PapersOnLine, 51:32 (2018), 310–313 | DOI
[14] Krein M.G., Nudelman A.A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973, 552 pp. | MR
[15] Maksimov V.P., “The structure of the Cauchy operator to a linear continuous-discrete functional differential system with aftereffect and some properties of its components”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki., 29:1 (2019), 40–51 | DOI | MR | Zbl
[16] Maksimov V.P., “Nepreryvno-diskretnye dinamicheskie modeli”, Ufim. mat. zhurn., 13:3 (2021), 97–106 | DOI | Zbl
[17] Maksimov V.P., “O vnutrennikh otsenkakh mnozhestv dostizhimosti dlya nepreryvno-diskretnykh sistem s diskretnoi pamyatyu”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:3 (2021), 141–151 | DOI | MR
[18] Voevodin V.V., Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977, 305 pp. | MR
[19] Maksimov V.P., “K veroyatnostnomu opisaniyu ansamblya traektorii nepreryvno-diskretnoi sistemy upravleniya s nepolnoi informatsiei”, Vestn. rossiiskikh un-v. Matematika, 28:143 (2023), 256–267 | DOI