Reconstruction of the absorption coefficient in a model of stationary reaction–convection–diffusion
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 166-181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Direct and inverse problems for the stationary reaction–convection–diffusion model are studied. The direct problem is to find a generalized or strong solution to the corresponding boundary value problems for all given model parameters. Conditions for generalized or strong solvability of the direct problem are given, a priori estimates for solutions are presented, and a continuous dependence of a solution to the direct problem on a number of parameters is established in various metrics. The inverse problem consists of finding the a priori unknown absorption coefficient of a medium, which characterizes the absorption of some substance (or heat sink) in a chemical process. Additional information for solving the inverse problem is the result of measuring the substance (or heat) flow on the accessible part of the boundary of the region where the process takes place. It is proved that the inverse problem is ill-posed. Examples are given showing that the inverse problem is unstable under the disturbance of the measured quantity and may have several solutions. To solve the inverse problem, a variational method based on the minimization of some suitable residual functional (objective functional) is proposed. The extremal properties of the problem of minimizing the residual functional are studied. An explicit analytical formula is found for calculating the gradient of the residual functional, and the corresponding adjoint system and optimality system are written. Several stable iterative methods for minimizing the residual functional are proposed. Numerical modeling of the solution to the inverse problem is carried out.
Mots-clés : reaction–convection–diffusion equation
Keywords: direct problem, inverse problem, residual functional, functional gradient, adjoint system, variational method, gradient minimization methods.
@article{TIMM_2024_30_3_a12,
     author = {A. I. Korotkii and Yu. V. Starodubtseva},
     title = {Reconstruction of the absorption coefficient in a model of stationary reaction{\textendash}convection{\textendash}diffusion},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {166--181},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a12/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - Yu. V. Starodubtseva
TI  - Reconstruction of the absorption coefficient in a model of stationary reaction–convection–diffusion
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 166
EP  - 181
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a12/
LA  - ru
ID  - TIMM_2024_30_3_a12
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A Yu. V. Starodubtseva
%T Reconstruction of the absorption coefficient in a model of stationary reaction–convection–diffusion
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 166-181
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a12/
%G ru
%F TIMM_2024_30_3_a12
A. I. Korotkii; Yu. V. Starodubtseva. Reconstruction of the absorption coefficient in a model of stationary reaction–convection–diffusion. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 166-181. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a12/

[1] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp.

[2] Ivanov V.K., Vasin V.K., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ikh prilozheniya, Nauka, M., 1978, 206 pp.

[3] Kabanikhin S.I., Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2009, 457 pp.

[4] Korotkii A.I., Kovtunov D.A., “Rekonstruktsiya granichnykh rezhimov v obratnoi zadache teplovoi konvektsii vysokovyazkoi zhidkosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12:2 (2006), 88–97

[5] Korotkii A.I., Tsepelev I.A., Ismail-Zade A.T., “Assimilyatsiya dannykh o svobodnoi poverkhnosti potoka zhidkosti dlya nakhozhdeniya ee vyazkosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:2 (2022), 143–157 | DOI | Zbl

[6] Korotkii A.I., Tsepelev I.A., “Assimilyatsiya granichnykh dannykh dlya vosstanovleniya koeffitsienta pogloscheniya v modeli statsionarnoi reaktsii-konvektsii-diffuzii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 29:2 (2023), 87–103 | DOI | Zbl

[7] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Clarendon Press, Oxford, 1961, 652 pp. | MR | Zbl

[8] Landau L.D., Lifshits E.M., Gidrodinamika, Nauka, M., 1986, 736 pp.

[9] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, FM, M., 1961, 203 pp. | MR

[10] Alekseev G.V., Tereshko D.A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008, 365 pp.

[11] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[12] Ladyzhenskaya O.A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[13] Mikhailov V.P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 392 pp.

[14] Adams R.A., Sobolev spaces, Academic Press, New York, 1975, 268 pp. | MR | Zbl

[15] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988, 336 pp. | MR

[16] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985, 590 pp. | MR

[17] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[18] Nocedal J., Wright S.J., Numerical Optimization, Springer, New York, 1999, 664 pp. | MR | Zbl

[19] Korotkii A.I., Litvinenko A.L., “Razreshimost odnoi smeshannoi kraevoi zadachi dlya statsionarnoi modeli reaktsii-konvektsii-diffuzii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:1 (2018), 106–120 | DOI