On intermediate values of quantization dimensions of idempotent measures
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 139-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The quantization dimension $\dim_{\mathcal F}(\xi)$ is defined for any point $\xi$ of spaces of the form $\mathcal F(X)$, where $\mathcal F$ is a half-normal metrizable functor and $X$ is a metric compact space. An example of a quantization dimension is the classical box dimension $\dim_B$ of closed subsets of a compact space $X$. In this work, the functor $I$ of idempotent measures or Maslov measures is considered as $\mathcal F$. It is known that, for any idempotent measure $\mu\in I(X)$, its (upper and lower) quantization dimensions do not exceed the upper and lower box dimensions, respectively, of the space $X$. These inequalities motivate the question about intermediate values of the quantization dimensions of idempotent measures. The following theorem is proved: on any metric compact space $X$ of dimension $\dim_BX=a\infty$, for any numbers $c\in[0,a]$ and $b\in[0,a/2)\cap[0 ,c]$, there is an idempotent measure whose lower quantization dimension is $b$ and whose upper quantization dimension is $c$. As follows from this theorem, if a metric compact space $X$ has positive box dimension, then $X$ always has an idempotent measure with a positive lower quantization dimension. Moreover, it is known that a similar statement for the box dimension is not true in the general case, since there exists a metric compact space whose box dimension is $1$ such that all of its proper closed subsets are zero-dimensional in the sense of the lower box dimension.
Keywords: idempotent measure, metrizable functor.
Mots-clés : box dimension, quantization dimension
@article{TIMM_2024_30_3_a10,
     author = {A. V. Ivanov},
     title = {On intermediate values of quantization dimensions of idempotent measures},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {139--148},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a10/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - On intermediate values of quantization dimensions of idempotent measures
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 139
EP  - 148
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a10/
LA  - ru
ID  - TIMM_2024_30_3_a10
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T On intermediate values of quantization dimensions of idempotent measures
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 139-148
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a10/
%G ru
%F TIMM_2024_30_3_a10
A. V. Ivanov. On intermediate values of quantization dimensions of idempotent measures. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 139-148. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a10/

[1] Ivanov A. V., “On quantization dimensions of idempotent probability measures”, Topology and its Appl., 306 (2022), 107931 | DOI | MR | Zbl

[2] Pontryagin L., Shnirelman L., “On one metric property of dimension”, Ann. Math., 33 (1932), 156–162 | DOI | MR | Zbl

[3] Pesin Ya.B., Teoriya razmernosti i dinamicheskie sistemy: sovremennyi vzglyad i prilozheniya, Institut kompyuternykh issledovanii, Moskva; Izhevsk, 2013, 404 pp.

[4] Graf S., Luschgy H., Foundations of quantization for probability distributions, Springer-Verlag, Berlin, 2000, 231 pp. | DOI | MR | Zbl

[5] Litvinov G.L., Maslov V.P., Shpiz G.B., “Idempotentnyi funktsionalnyi analiz. Algebraicheskii podkhod”, Mat. zametki, 69:5 (2001), 758–797 | DOI | MR | Zbl

[6] Zarichnyi M.M., “Prostranstva i otobrazheniya idempotentnykh mer”, Izv. RAN. Ser. matematicheskaya, 74:3 (2010), 45–64 | DOI | MR | Zbl

[7] Schepin E.V., “Funktory i neschetnye stepeni kompaktov”, Uspekhi mat. nauk, 36:3 (1981), 3–62 | MR | Zbl

[8] Bazylevych L., Repovs D., Zarichnyi M., “Spaces of idempotent measures of compact metric spaces”, Topology and its Appl., 157:1 (2010), 136–144 | DOI | MR | Zbl

[9] Fedorchuk V.V., “Troiki beskonechnykh iteratsii metrizuemykh funktorov”, Izv. AN SSSR. Ser. matematicheskaya, 54:2 (1990), 396–417

[10] Fedorchuk V.V., “Bikompakty bez promezhutochnykh razmernostei”, Dokl. AN SSSR, 213:4 (1973), 795–797 | Zbl

[11] Ivanov A.V., “O promezhutochnykh znacheniyakh emkostnykh razmernostei”, Sib. mat. zhurn., 64:3 (2023), 540–545 | DOI | Zbl

[12] Fedorchuk V., Todorčević S., “Cellularity of covariant functors”, Topology and its Appl., 76 (1997), 125–150 | DOI | MR | Zbl

[13] Akian M., “Densities of idempotent measures and large deviations”, Trans. of Amer. Math. Soc., 351:11 (1999), 4515–4543 | DOI | MR | Zbl