An optimal control problem with a relaxed state constraint
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 14-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We explore an optimal control problem in the context of a specified open set representing “undesirable” system states. This problem statement is closely linked to the standard optimal control problem with a state constraint and can be viewed as a relaxation of the latter. The interrelation between these problems is examined. The recently derived necessary first-order optimality conditions for the discussed problem are presented. Additionally, an illustrative example is given.
Keywords: optimal control, differential inclusion, Pontryagin's maximum principle, refined Euler–Lagrange inclusion, state constraint, discontinuous integrand, risk zone.
@article{TIMM_2024_30_3_a1,
     author = {S. M. Aseev},
     title = {An optimal control problem with a relaxed state constraint},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {14--29},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a1/}
}
TY  - JOUR
AU  - S. M. Aseev
TI  - An optimal control problem with a relaxed state constraint
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 14
EP  - 29
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a1/
LA  - ru
ID  - TIMM_2024_30_3_a1
ER  - 
%0 Journal Article
%A S. M. Aseev
%T An optimal control problem with a relaxed state constraint
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 14-29
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a1/
%G ru
%F TIMM_2024_30_3_a1
S. M. Aseev. An optimal control problem with a relaxed state constraint. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 14-29. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a1/

[1] Rockafellar R., “Clarke's tangent cones and the boundaries of closed sets”, Nonlinear Analysis: Theory, Methods Applications, 3:1 (1979), 145–154 | DOI | MR | Zbl

[2] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[3] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 481 pp. | MR

[4] Pshenichnyi B.N., Ochilov S., “O zadache optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Kibernetika i vychisl. tekhnika, 99 (1993), 3–8

[5] Doyen L., Saint-Pierre P., “Scale of viability and minimal time of crisis”, Set-Valued Anal., 5:3 (1997), 227–246 | DOI | MR | Zbl

[6] Aubin J.P., Viability theory, Birkhäuser, Basel, 1991, 543 pp. | MR | Zbl

[7] Bayen T., Rapaport A., “About Moreau–Yosida regularization of the minimal time crisis problem”, J. Convex Anal., 23:1 (2016), 263–290 | MR | Zbl

[8] Boumaza K., Bayen T., Rapaport A., “Necessary optimality condition for the minimal time crisis relaxing transverse condition via regularization”, ESAIM: Contr., Optim. Calc. Variat., 27 (2021), 105 | DOI | MR | Zbl

[9] Aseev S.M., Smirnov A.I., “Neobkhodimye usloviya optimalnosti pervogo poryadka dlya zadachi optimalnogo prokhozhdeniya cherez zadannuyu oblast”, sb. st., Nelineinaya dinamika i upravlenie, no. 4, Fizmatlit, M., 2004, 179–204

[10] Smirnov A.I., “Neobkhodimye usloviya optimalnosti dlya odnogo klassa zadach optimalnogo upravleniya s razryvnym integrantom”, Tr. MIAN, 262 (2008), 222–239 | Zbl

[11] Aseev S.M., “Ob oslablenii fazovykh ogranichenii v zadachakh optimalnogo upravleniya”, Tr. MIAN, 321 (2023), 31–44 | DOI | Zbl

[12] Cesari L., Optimization — theory and applications. Problems with ordinary differential equations, Springer, NY, 1983 | DOI | MR | Zbl

[13] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka. Glav. red. fiz.-mat. lit., M., 1985, 225 pp. | MR

[14] Clarke F., Functional analysis, calculus of variations and optimal control, Ser. Graduate Texts in Math., 264, Springer-Verlag, London, 2013, 591 pp. | DOI | MR | Zbl

[15] Mordukhovich B.Sh., “Optimal control of difference, differential, and differential-difference inclusions”, J. Math. Sci., 100 (2000), 2613–2632 | DOI | MR

[16] Aseev S.M., “Usilennoe vklyuchenie Eilera — Lagranzha dlya odnoi zadachi optimalnogo upravleniya s razryvnym integrantom”, Tr. MIAN, 315 (2021), 34–63 | DOI | Zbl

[17] Aseev S.M., “Methods of regularization in nonsmooth problems of dynamic optimization”, J. Math. Sci., 94:3 (1999), 1366–1393 | DOI | MR | Zbl

[18] Arutyunov A.V., Aseev S.M., “Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints”, SIAM J. Control Optim., 35:3 (1997), 930–952 | DOI | MR | Zbl

[19] Vinter R.B., Optimal Control, Birkhaüser, Boston, 2000, 507 pp. | MR | Zbl

[20] Arutyunov A.V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997, 254 pp. | MR

[21] Arutyunov A.V., “Perturbations of extremal problems with constraints and necessary optimality conditions”, J. Sov. Math., 54:6 (1991), 1342–1400 | DOI | MR | Zbl

[22] Arutyunov A.V., Karamzin D.Yu., Pereira F.L., “The maximum principle for optimal control problems with state constraints by R.V. Gamkrelidze: revisited”, J. Optim. Theory Appl., 149:3 (2011), 474–493 | DOI | MR | Zbl

[23] Fontes F.A.C.C., Frankowska H., “Normality and nondegeneracy for optimal control problems with state constraints”, J. Optim. Theory Appl., 166:1 (2015), 115–136 | DOI | MR | Zbl