Mots-clés : superdiffusion equation, piecewise parabolic interpolation
@article{TIMM_2024_30_2_a9,
author = {V. G. Pimenov and A. B. Lozhnikov},
title = {Asymptotic expansion of the error of a numerical method for solving a superdiffusion equation with functional delay},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {138--151},
year = {2024},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a9/}
}
TY - JOUR AU - V. G. Pimenov AU - A. B. Lozhnikov TI - Asymptotic expansion of the error of a numerical method for solving a superdiffusion equation with functional delay JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 138 EP - 151 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a9/ LA - ru ID - TIMM_2024_30_2_a9 ER -
%0 Journal Article %A V. G. Pimenov %A A. B. Lozhnikov %T Asymptotic expansion of the error of a numerical method for solving a superdiffusion equation with functional delay %J Trudy Instituta matematiki i mehaniki %D 2024 %P 138-151 %V 30 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a9/ %G ru %F TIMM_2024_30_2_a9
V. G. Pimenov; A. B. Lozhnikov. Asymptotic expansion of the error of a numerical method for solving a superdiffusion equation with functional delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 138-151. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a9/
[1] Wu J., Theory and application of partial functional differential equations, Springer-Verlag, NY, 1996, 438 pp. | MR
[2] Polyanin A., Sorokin V., Zhurov A., Delay ordinary and partial differential equations, CRC Press, London, NY, Boca Raton, 2023, 400 pp.
[3] Kamont Z., Kropelnitska K., “Neyavnye raznostnye metody dlya evolyutsionnykh funktsionalno-differentsialnykh uravnenii”, Sib. zhurn. vychislit. matematiki, 14:4 (2011), 361–379 | MR | Zbl
[4] Pimenov V.G., Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh s nasledstvennostyu, Izd-vo Ural. un-ta, Ekaterinburg, 2014, 134 pp.
[5] Meerschaert M.M., Tadjeran C., “Finite difference approximations for two-sided space-fractional partial differential equations”, Appl. Numer. Math., 56 (1) (2006), 80–90 | DOI | MR | Zbl
[6] Tadjeran C., Meerschaert M.M., Scheffler H.P., “A second-order accurate numerical approximation for the fractional diffusion equation”, J. Comput. Phys., 213 (1) (2006), 205–213 | DOI | MR | Zbl
[7] Tian W., Zhou H., Deng W., “A class of second order difference approximation for solving space fractional diffusion equations”, Math. Comput., 84 (294) (2015), 1703–1727 | DOI | MR | Zbl
[8] Pimenov V.G., Hendy A.S., “A fractional analog of Crank–Nicholson method for the two sided space fractional partial equation with functional delay”, Ural Math. J., 2 (1) (2016), 48–57 | DOI | Zbl
[9] Ibrahim M., Pimenov V.G., “Crank-Nikolson scheme for two-dimensional in space fractional equations with functional delay”, Izv. In-ta matematiki i informatiki Udmurt. gos. univ-ta, 57 (2021), 128–141 | DOI | MR | Zbl
[10] Marchuk G.I., Shaidurov V.V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1989, 320 pp. | MR
[11] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR
[12] Deng D., Chen J., “Explicit Richardson extrapolation methods and their analyses for solving two-dimensional nonlinear wave equation with delays”, Networks and Heterogeneous Media, 18:1 (2023), 412–443 | DOI | MR | Zbl
[13] Zhang C., Tan Z., “Linearized compact difference methods combined with Richardson extrapolation for nonlinear delay Sobolev equations”, Communications in Nonlinear Science and Numerical Simulation, 1 (2020), 105461 | DOI | MR
[14] Pimenov V.G., Lozhnikov A.B., “Metod Richardsona dlya diffuzionnogo uravneniya s funktsionalnym zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 29:2 (2023), 133–144 | DOI
[15] Pimenov V.G., Tashirova E.E., “Asimptoticheskoe razlozhenie pogreshnosti chislennogo metoda dlya resheniya volnovogo uravneniya s funktsionalnym zapazdyvaniem”, Izv. In-ta matematiki i informatiki Udmurt. gos. univ-ta, 62 (2023), 71–86 | Zbl
[16] Li C.P., Zeng F.H., Numerical methods for fractional calculus, CRC Press, London, NY, Boca Raton, 2015, 294 pp. | MR | Zbl
[17] Kim A.V., Pimenov V.G., i-Gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, RKhD, M. ; Izhevsk, 2004, 256 pp.
[18] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979, 426 pp. | MR