Asymptotic expansion of the error of a numerical method for solving a superdiffusion equation with functional delay
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 138-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An equation with Riesz fractional space derivatives and a functional delay effect is considered. The problem is discretized. Constructions of an analog of the Crank–Nicolson difference method with piecewise linear interpolation and extrapolation by continuation are presented. The method has the second order of smallness with respect to the time and space sampling steps $\Delta$ and $h$. The basic Crank–Nicolson method with piecewise parabolic interpolation and extrapolation by continuation is constructed. The order of the residual without interpolation of the basic method is studied. The expansion coefficients of the residual with respect to $\Delta$ and $h$ are written. An equation is derived for the main term of the asymptotic expansion of the global error. Under certain assumptions, the legality of using the Richardson extrapolation procedure is substantiated and the corresponding method is constructed. The main of these assumptions is the consistency of the orders of smallness $\Delta$ and $h$. It is proved that the method has order $O(\Delta^3+h^3)$.
Keywords: Riesz fractional derivatives, functional delay, Crank–Nicolson method, extrapolation by continuation, Richardson method.
Mots-clés : superdiffusion equation, piecewise parabolic interpolation
@article{TIMM_2024_30_2_a9,
     author = {V. G. Pimenov and A. B. Lozhnikov},
     title = {Asymptotic expansion of the error of a numerical method for solving a superdiffusion equation with functional delay},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {138--151},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a9/}
}
TY  - JOUR
AU  - V. G. Pimenov
AU  - A. B. Lozhnikov
TI  - Asymptotic expansion of the error of a numerical method for solving a superdiffusion equation with functional delay
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 138
EP  - 151
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a9/
LA  - ru
ID  - TIMM_2024_30_2_a9
ER  - 
%0 Journal Article
%A V. G. Pimenov
%A A. B. Lozhnikov
%T Asymptotic expansion of the error of a numerical method for solving a superdiffusion equation with functional delay
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 138-151
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a9/
%G ru
%F TIMM_2024_30_2_a9
V. G. Pimenov; A. B. Lozhnikov. Asymptotic expansion of the error of a numerical method for solving a superdiffusion equation with functional delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 138-151. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a9/

[1] Wu J., Theory and application of partial functional differential equations, Springer-Verlag, NY, 1996, 438 pp. | MR

[2] Polyanin A., Sorokin V., Zhurov A., Delay ordinary and partial differential equations, CRC Press, London, NY, Boca Raton, 2023, 400 pp.

[3] Kamont Z., Kropelnitska K., “Neyavnye raznostnye metody dlya evolyutsionnykh funktsionalno-differentsialnykh uravnenii”, Sib. zhurn. vychislit. matematiki, 14:4 (2011), 361–379 | MR | Zbl

[4] Pimenov V.G., Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh s nasledstvennostyu, Izd-vo Ural. un-ta, Ekaterinburg, 2014, 134 pp.

[5] Meerschaert M.M., Tadjeran C., “Finite difference approximations for two-sided space-fractional partial differential equations”, Appl. Numer. Math., 56 (1) (2006), 80–90 | DOI | MR | Zbl

[6] Tadjeran C., Meerschaert M.M., Scheffler H.P., “A second-order accurate numerical approximation for the fractional diffusion equation”, J. Comput. Phys., 213 (1) (2006), 205–213 | DOI | MR | Zbl

[7] Tian W., Zhou H., Deng W., “A class of second order difference approximation for solving space fractional diffusion equations”, Math. Comput., 84 (294) (2015), 1703–1727 | DOI | MR | Zbl

[8] Pimenov V.G., Hendy A.S., “A fractional analog of Crank–Nicholson method for the two sided space fractional partial equation with functional delay”, Ural Math. J., 2 (1) (2016), 48–57 | DOI | Zbl

[9] Ibrahim M., Pimenov V.G., “Crank-Nikolson scheme for two-dimensional in space fractional equations with functional delay”, Izv. In-ta matematiki i informatiki Udmurt. gos. univ-ta, 57 (2021), 128–141 | DOI | MR | Zbl

[10] Marchuk G.I., Shaidurov V.V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1989, 320 pp. | MR

[11] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[12] Deng D., Chen J., “Explicit Richardson extrapolation methods and their analyses for solving two-dimensional nonlinear wave equation with delays”, Networks and Heterogeneous Media, 18:1 (2023), 412–443 | DOI | MR | Zbl

[13] Zhang C., Tan Z., “Linearized compact difference methods combined with Richardson extrapolation for nonlinear delay Sobolev equations”, Communications in Nonlinear Science and Numerical Simulation, 1 (2020), 105461 | DOI | MR

[14] Pimenov V.G., Lozhnikov A.B., “Metod Richardsona dlya diffuzionnogo uravneniya s funktsionalnym zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 29:2 (2023), 133–144 | DOI

[15] Pimenov V.G., Tashirova E.E., “Asimptoticheskoe razlozhenie pogreshnosti chislennogo metoda dlya resheniya volnovogo uravneniya s funktsionalnym zapazdyvaniem”, Izv. In-ta matematiki i informatiki Udmurt. gos. univ-ta, 62 (2023), 71–86 | Zbl

[16] Li C.P., Zeng F.H., Numerical methods for fractional calculus, CRC Press, London, NY, Boca Raton, 2015, 294 pp. | MR | Zbl

[17] Kim A.V., Pimenov V.G., i-Gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, RKhD, M. ; Izhevsk, 2004, 256 pp.

[18] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979, 426 pp. | MR