On the identification of control failures by the dynamic regularization method
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 116-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of calculating points and magnitudes of discontinuities in the controls acting on a system described by a nonlinear vector ordinary differential equation is considered. A similar problem is well known in systems theory and belongs to the class of failure identification problems. This paper specifies a regularizing algorithm that solves the problem synchronously with the process of functioning of the control system. The algorithm is based on a feedback control method called the dynamic regularization method in the literature; this method was previously actively used in problems of online reconstruction of nonsmooth unknown disturbances. The algorithm described in this work is stable to information interference and calculation errors.
Keywords: control, failure identification.
@article{TIMM_2024_30_2_a7,
     author = {V. I. Maksimov and Yu. S. Osipov},
     title = {On the identification of control failures by the dynamic regularization method},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {116--129},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a7/}
}
TY  - JOUR
AU  - V. I. Maksimov
AU  - Yu. S. Osipov
TI  - On the identification of control failures by the dynamic regularization method
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 116
EP  - 129
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a7/
LA  - ru
ID  - TIMM_2024_30_2_a7
ER  - 
%0 Journal Article
%A V. I. Maksimov
%A Yu. S. Osipov
%T On the identification of control failures by the dynamic regularization method
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 116-129
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a7/
%G ru
%F TIMM_2024_30_2_a7
V. I. Maksimov; Yu. S. Osipov. On the identification of control failures by the dynamic regularization method. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 116-129. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a7/

[1] Isermann R., “Fault diagnosis of machines via parameter estimation and knowledge processing — a tutorial paper”, Automatica, 29:4 (1993), 815–835 | DOI | MR | Zbl

[2] Patton R.J., Frank P.M., Clark R.N., Issues in fault diagnosis for dynamic systems, Springer, London, 2000, 597 pp. | DOI

[3] Gertler J., Fault detection and diagnosis in engineering systems, Taylor, Boca Raton, 1998, 504 pp. | DOI

[4] Korbicz J., Kościelny J.M, Kowalczuk Z., Cholewa W., Fault diagnosis. Models, Artificial intelligence, Applications, Springer, Berlin, 2012, 922 pp. | DOI

[5] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 285 pp.

[6] Lavrentev M.M., Romanov V.G., Shishatskii S.P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980, 286 pp. | MR

[7] Prilepko A.I., Orlovsky D.G., Vasin I.A., Methods for solving inverse problems in mathematical physics, Marcel Dekker, NY, 2000, 709 pp. | DOI | MR | Zbl

[8] Korostelev A.P., “O minimaksnom otsenivanii razryvnogo signala”, Teoriya veroyatnostei i ee primeneniya, 32:4 (1987), 796–799 | MR | Zbl

[9] Antonova T.V., “Novye metody lokalizatsii razryvov zashumlennoi funktsii”, Sib. zhurn. vychislitelnoi matematiki, 13:4 (2010), 375–386 | MR | Zbl

[10] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[11] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, 1995, 625 pp. | MR | Zbl

[12] Osipov Yu.S., Vasilev F.P., Potapov M.M., Osnovy metoda dinamichekoi regulyarizatsii, Izd-vo MGU, M., 1999, 237 pp.

[13] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2011, 292 pp.

[14] Osipov Yu.S., Kryazhimskii A.V., “O modelirovanii parametrov dinamicheskoi sistemy”, Zadachi upravleniya i modelirovaniya v dinamicheskikh sistemakh, Izd-vo UNTs, Sverdlovsk, 1984, 47–68

[15] Kryazhimskii A.V., Osipov Yu.S., “K regulyarizatsii vypukloi ekstremalnoi zadachi s netochno zadannymi ogranicheniyami. Prilozhenie k zadache optimalnogo upravleniya s fazovymi ogranicheniryami”, Nekotorye metody pozitsionnogo i programmnogo upravleniya, Izd-vo UNTs, Sverdlovsk, 1987, 34–54 | MR

[16] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., “Rekonstruktsiya ekstremalnykh vozmuschenii v parabolicheskikh uravneniyakh”, Zhurn. vychislit. matematiki i mat. fiziki, 37:3 (1997), 291–301 | MR | Zbl

[17] Kryazhimskii A.V., Maksimov V.I., “O sochetanii protsessov rekonstruktsii i garantirovannogo upravleniya”, Avtomatika i telemekhanika, 2013, no. 8, 26–34

[18] Maksimov V.I., “Differentsialnaya igra navedeniya pri nepolnoi informatsii o fazovykh koordinatakh i neizvestnom nachalnom sostoyanii”, Differents. uravneniya, 51:11 (2015), 1676–1685 | DOI | Zbl