On solvability of the tracking problem in nonlinear vector optimization of oscillation processes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 103-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The tracking problem is investigated in the nonlinear vector optimization of oscillation processes described by integro-differential partial differential equations when the scalar function of external and boundary influence depends nonlinearly on several controls. It is established that this problem has some specific features; in particular, the components of the distributed and boundary vector controls satisfy a system of equal relations and are defined as a solution to a system of two nonlinear integral equations. A method for solving this system is developed. Sufficient conditions are found for the unique solvability of the tracking problem, and an algorithm is developed for constructing a complete solution to the nonlinear optimization problem.
Keywords: tracking problem, nonlinear optimization, maximum principle, properties of equal ratios, distributed vector optimal control, boundary vector optimal control, optimal process, minimum value of the functional.
@article{TIMM_2024_30_2_a6,
     author = {A. K. Kerimbekov and E. F. Abdyldaeva},
     title = {On solvability of the tracking problem in nonlinear vector optimization of oscillation processes},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {103--115},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a6/}
}
TY  - JOUR
AU  - A. K. Kerimbekov
AU  - E. F. Abdyldaeva
TI  - On solvability of the tracking problem in nonlinear vector optimization of oscillation processes
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 103
EP  - 115
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a6/
LA  - ru
ID  - TIMM_2024_30_2_a6
ER  - 
%0 Journal Article
%A A. K. Kerimbekov
%A E. F. Abdyldaeva
%T On solvability of the tracking problem in nonlinear vector optimization of oscillation processes
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 103-115
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a6/
%G ru
%F TIMM_2024_30_2_a6
A. K. Kerimbekov; E. F. Abdyldaeva. On solvability of the tracking problem in nonlinear vector optimization of oscillation processes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 103-115. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a6/

[1] Egorov A.I., “Optimalnye protsessy v sistemakh s raspredelennymi parametrami i nekotorye zadachi teorii invariantnosti”, Izv. AN SSSR. Ser. Matematika, 29:16 (1965), 1205–1260 | Zbl

[2] Egorov A.I., Optimalnoe uravnenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978, 464 pp.

[3] Komkov V., Teoriya optimalnogo upravleniya dempfirovaniem kolebanii prostykh uprugikh sistem, Nauka, M., 1978, 464 pp.

[4] Butkovskii A.G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965, 476 pp.

[5] Volterra V.I., Teoriya funktsionalov, integralnykh i integro-differentsialnykh uravnenii, Nauka, M., 1982, 304 pp.

[6] Vladimirov V.S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Trudy MIAN im. V.A. Steklova, 61, 1961, 3–158

[7] Rikhtmaier P., Printsip sovremennoi matematicheskoi fiziki, Mir, M., 1982, 488 pp. | MR

[8] Plotnikov V.I., “Energeticheskoe neravenstvo i svoistvo pereopredelennosti sistemy sobstvennykh funktsii”, Izv. AN SSR. Ser. matematicheskaya, 32:4 (1968), 743–755 | Zbl

[9] Kerimbekov A., Abdyldaeva E.F., “O ravnykh otnosheniyakh v zadache granichnogo vektornogo upravleniya uprugimi kolebaniyami, opisyvaemymi fredgolmovymi integro-differentsialnymi uravneniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 163–176 | DOI | MR

[10] Lyusternik L.A., Sobolev V.I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR