Solutions with a zero front to the quasilinear parabolic heat equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 86-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers a nonlinear second-order evolution equation known as the nonlinear (quasilinear) heat equation with a source (sink) and also as the generalized porous medium equation. We deal with the case of an arbitrary dimension, and there is central (axial) symmetry. In other words, the unknown function depends on time $t$ and the distance $\rho$ to some point (straight line). The study concerns nontrivial solutions with a zero front that describe disturbances propagating over a stationary (cold) background with a finite velocity. A new theorem for the existence and uniqueness of a solution with the desired properties is proved. It allows one to construct the solution as a special series with recursively calculated coefficients and to cancel the singularity at the point $\rho=0$ by a degenerate change of independent variables. For the considered problem, an analog of S.V. Kovalevskaya's example is presented. We obtain conditions which ensure that the coefficients of the constructed series are constants; i.e., the original problem is reduced to the integration of an ordinary differential equation with a singularity in the factor at the highest derivative. The properties of the ordinary differential equation are studied using majorant methods and qualitative analysis. The results obtained are interpreted from the point of view of the original problem.
Keywords: nonlinear partial differential equations, generalized porous medium equation, degeneration, initial–boundary value problem, existence and uniqueness theorem, series, majorant method, qualitative analysis of ordinary differential equations.
Mots-clés : convergence, exact solution
@article{TIMM_2024_30_2_a5,
     author = {A. L. Kazakov},
     title = {Solutions with a zero front to the quasilinear parabolic heat equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {86--102},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a5/}
}
TY  - JOUR
AU  - A. L. Kazakov
TI  - Solutions with a zero front to the quasilinear parabolic heat equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 86
EP  - 102
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a5/
LA  - ru
ID  - TIMM_2024_30_2_a5
ER  - 
%0 Journal Article
%A A. L. Kazakov
%T Solutions with a zero front to the quasilinear parabolic heat equation
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 86-102
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a5/
%G ru
%F TIMM_2024_30_2_a5
A. L. Kazakov. Solutions with a zero front to the quasilinear parabolic heat equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 86-102. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a5/

[1] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[2] Galaktionov V.A., Dorodnitsyn V.A., Elenin G.G., Kurdyumov S.P., Samarskii A.A., “Kvazilineinoe uravnenie teploprovodnosti s istochnikom: obostrenie, lokalizatsiya, simmetriya, tochnye resheniya, asimptotiki, struktury”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 28 (1986), 95–205

[3] Vazquez J., The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007, 624 pp. | DOI | MR

[4] Boussinesq J., Essai sur la theorie des eaux courantes, Imprimerie Nationale, Paris, 1877, 666 pp.

[5] Kovalev V.A., Kuretova E.D., Kurkina E.S., “O formirovanii nitepodobnykh struktur na rannei faze solnechnykh vspyshek”, Fizika plazmy, 46:4 (2020), 351–357 | DOI

[6] Murray J.D., Mathematical biology II: Spatial models and biomedical applications, Interdisciplinary Appl. Math., 18, Springer, NY, 2003, 837 pp. | DOI | MR

[7] Barenblatt G.I., Entov V.N., Ryzhik V.M., Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984, 211 pp.

[8] Shagapov V.Sh., Mukhametshin S.M., Galiaskarova G.R., “Rasprostranenie tyazhelykh atmosfernykh vybrosov s uchetom landshafta mestnosti”, Inzhenerno-fizicheskii zhurnal, 78:2 (2005), 99–103

[9] Filimonov M.Yu., Kamnev Ya.K., Shein A.N., Vaganova N.A., “Modeling the temperature field in frozen soil under buildings in the city of Salekhard taking into account temperature monitoring”, Land, 11:7 (2022), 1102 | DOI

[10] Andreev V.K., Gaponenko Yu.A., Goncharova O.N., Pukhnachev V.V., Covremennye matematicheskie modeli konvektsii, Fizmatlit, M., 2008, 368 pp.

[11] Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987, 480 pp.

[12] Svirshchevskii S.R., “Exact solutions of a nonlinear diffusion equation on polynomial invariant subspace of maximal dimension”, Commun. Nonlinear Sci. Numer. Simul., 112 (2022), 106515 | DOI | MR | Zbl

[13] Sidorov A.F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001, 576 pp. | MR

[14] DiBenedetto E., Degenerate parabolic equations, Springer-Verlag, NY, 1993, 388 pp. | DOI | MR | Zbl

[15] Zeldovich Ya.B., Kompaneets A.S., “K teorii rasprostraneniya tepla pri teploprovodnosti, zavisyaschei ot temperatury”, Sbornik, posvyaschennyi 70-letiyu A.F. Ioffe, 1950, 61–71

[16] Kovrizhnykh O.O., “O postroenii asimptoticheskogo resheniya nelineinogo vyrozhdayuschegosya parabolicheskogo uravneniya”, Zhurnal vych. mat. i mat. fiz., 43:10 (2003), 1487–1493 | MR | Zbl

[17] Vaganova N.A., “Postroenie novykh klassov reshenii nelineinogo uravneniya filtratsii s pomoschyu spetsialnykh soglasovannykh ryadov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 9:2 (2003), 10–20 | MR

[18] Bautin S.P., Analiticheskaya teplovaya volna, Fizmatlit, M., 2003, 88 pp.

[19] Kazakov A.L., “O tochnykh resheniyakh kraevoi zadachi o dvizhenii teplovoi volny dlya uravneniya nelineinoi teploprovodnosti”, Sib. elektron. mat. izvestiya, 16 (2019), 1057–1068 | DOI | Zbl

[20] Filimonov M.Yu., “Primenenie metoda spetsialnykh ryadov dlya postroeniya novykh klassov reshenii nelineinykh uravnenii s chastnymi proizvodnymi”, Differents. uravneniya, 39:6 (2003), 801–808 | MR | Zbl

[21] Filimonov M.Yu., “Ispolzovanie metoda spetsialnykh ryadov dlya predstavleniya reshenii nachalno-kraevykh zadach dlya nelineinykh uravnenii s chastnymi proizvodnymi”, Differents. uravneniya, 39:8 (2003), 1100–1107 | MR | Zbl

[22] Filimonov M.Yu., “Representation of solutions of boundary value problems for nonlinear evolution equations by special series with recurrently calculated coefficients”, Journal of Physics: Conference Series, 1268 (2019), 012071 | DOI

[23] Rubina L.I., Ulyanov O.N., “Ob odnom metode resheniya uravneniya nelineinoi teploprovodnosti”, Sib. mat. zhurn., 53:5 (2012), 1091–1101 | MR | Zbl

[24] Kazakov A.L., Orlov S.S., “O nekotorykh tochnykh resheniyakh nelineinogo uravneniya teploprovodnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:1 (2016), 112–123 | MR

[25] Kazakov A.L., Orlov Sv.S., Orlov S.S., “Postroenie i issledovanie nekotorykh tochnykh reshenii nelineinogo uravneniya teploprovodnosti”, Sib. mat. zhurn., 59:3 (2018), 544–560 | DOI | MR | Zbl

[26] Kudryashov N.A., Sinelshchikov D.I., “On the integrability conditions for a family of Li$\acute e$nard-type equations”, Regular and Chaotic Dynamics, 21:5 (2016), 548–555 | DOI | MR | Zbl

[27] Kazakov A.L., Kuznetsov P.A., Lempert A.A., “Analytical solutions to the singular problem for a system of nonlinear parabolic equations of the reaction-diffusion type”, Symmetry, 12:6 (2020), 999 | DOI

[28] Kazakov A., Lempert A., “Multidimensional diffusion-wave-type solutions to the second-order evolutionary equation”, Mathematics, 12:2 (2024), 354 | DOI

[29] Kozlov V.V., “Sofya Kovalevskaya: matematik i chelovek”, Uspekhi mat. nauk, 55:6 (2000), 159–172 | DOI | MR | Zbl

[30] Kazakov A., “Solutions to nonlinear evolutionary parabolic equations of the diffusion wave type”, Symmetry, 13:5 (2021), 871 | DOI

[31] Kazakov A.L., Lempert A.A., “Tochnye resheniya tipa diffuzionnykh voln dlya nelineinogo vyrozhdayuschegosya parabolicheskogo uravneniya vtorogo poryadka”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:3 (2022), 114–128 | DOI | MR

[32] Kurant R., Uravneniya s chastnymi proizvodnymi, v. 2, Mir, M., 1964, 830 pp.

[33] Sedov L.I., Metody podobiya i razmernosti v mekhanike, Nauka, M., 1987, 432 pp. | MR

[34] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov: Opredeleniya, teoremy, formuly, Lan, M., 2003, 832 pp.

[35] Bautin N.N., Leontovich E.A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990, 488 pp.

[36] Kazakov A.L., Lempert A.A., “Diffusion-wave type solutions to the second-order evolutionary equation with power nonlinearities”, Mathematics, 10:2 (2022), 232 | DOI