Mots-clés : convergence, exact solution
@article{TIMM_2024_30_2_a5,
author = {A. L. Kazakov},
title = {Solutions with a zero front to the quasilinear parabolic heat equation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {86--102},
year = {2024},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a5/}
}
A. L. Kazakov. Solutions with a zero front to the quasilinear parabolic heat equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 86-102. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a5/
[1] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR
[2] Galaktionov V.A., Dorodnitsyn V.A., Elenin G.G., Kurdyumov S.P., Samarskii A.A., “Kvazilineinoe uravnenie teploprovodnosti s istochnikom: obostrenie, lokalizatsiya, simmetriya, tochnye resheniya, asimptotiki, struktury”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 28 (1986), 95–205
[3] Vazquez J., The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007, 624 pp. | DOI | MR
[4] Boussinesq J., Essai sur la theorie des eaux courantes, Imprimerie Nationale, Paris, 1877, 666 pp.
[5] Kovalev V.A., Kuretova E.D., Kurkina E.S., “O formirovanii nitepodobnykh struktur na rannei faze solnechnykh vspyshek”, Fizika plazmy, 46:4 (2020), 351–357 | DOI
[6] Murray J.D., Mathematical biology II: Spatial models and biomedical applications, Interdisciplinary Appl. Math., 18, Springer, NY, 2003, 837 pp. | DOI | MR
[7] Barenblatt G.I., Entov V.N., Ryzhik V.M., Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984, 211 pp.
[8] Shagapov V.Sh., Mukhametshin S.M., Galiaskarova G.R., “Rasprostranenie tyazhelykh atmosfernykh vybrosov s uchetom landshafta mestnosti”, Inzhenerno-fizicheskii zhurnal, 78:2 (2005), 99–103
[9] Filimonov M.Yu., Kamnev Ya.K., Shein A.N., Vaganova N.A., “Modeling the temperature field in frozen soil under buildings in the city of Salekhard taking into account temperature monitoring”, Land, 11:7 (2022), 1102 | DOI
[10] Andreev V.K., Gaponenko Yu.A., Goncharova O.N., Pukhnachev V.V., Covremennye matematicheskie modeli konvektsii, Fizmatlit, M., 2008, 368 pp.
[11] Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987, 480 pp.
[12] Svirshchevskii S.R., “Exact solutions of a nonlinear diffusion equation on polynomial invariant subspace of maximal dimension”, Commun. Nonlinear Sci. Numer. Simul., 112 (2022), 106515 | DOI | MR | Zbl
[13] Sidorov A.F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001, 576 pp. | MR
[14] DiBenedetto E., Degenerate parabolic equations, Springer-Verlag, NY, 1993, 388 pp. | DOI | MR | Zbl
[15] Zeldovich Ya.B., Kompaneets A.S., “K teorii rasprostraneniya tepla pri teploprovodnosti, zavisyaschei ot temperatury”, Sbornik, posvyaschennyi 70-letiyu A.F. Ioffe, 1950, 61–71
[16] Kovrizhnykh O.O., “O postroenii asimptoticheskogo resheniya nelineinogo vyrozhdayuschegosya parabolicheskogo uravneniya”, Zhurnal vych. mat. i mat. fiz., 43:10 (2003), 1487–1493 | MR | Zbl
[17] Vaganova N.A., “Postroenie novykh klassov reshenii nelineinogo uravneniya filtratsii s pomoschyu spetsialnykh soglasovannykh ryadov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 9:2 (2003), 10–20 | MR
[18] Bautin S.P., Analiticheskaya teplovaya volna, Fizmatlit, M., 2003, 88 pp.
[19] Kazakov A.L., “O tochnykh resheniyakh kraevoi zadachi o dvizhenii teplovoi volny dlya uravneniya nelineinoi teploprovodnosti”, Sib. elektron. mat. izvestiya, 16 (2019), 1057–1068 | DOI | Zbl
[20] Filimonov M.Yu., “Primenenie metoda spetsialnykh ryadov dlya postroeniya novykh klassov reshenii nelineinykh uravnenii s chastnymi proizvodnymi”, Differents. uravneniya, 39:6 (2003), 801–808 | MR | Zbl
[21] Filimonov M.Yu., “Ispolzovanie metoda spetsialnykh ryadov dlya predstavleniya reshenii nachalno-kraevykh zadach dlya nelineinykh uravnenii s chastnymi proizvodnymi”, Differents. uravneniya, 39:8 (2003), 1100–1107 | MR | Zbl
[22] Filimonov M.Yu., “Representation of solutions of boundary value problems for nonlinear evolution equations by special series with recurrently calculated coefficients”, Journal of Physics: Conference Series, 1268 (2019), 012071 | DOI
[23] Rubina L.I., Ulyanov O.N., “Ob odnom metode resheniya uravneniya nelineinoi teploprovodnosti”, Sib. mat. zhurn., 53:5 (2012), 1091–1101 | MR | Zbl
[24] Kazakov A.L., Orlov S.S., “O nekotorykh tochnykh resheniyakh nelineinogo uravneniya teploprovodnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:1 (2016), 112–123 | MR
[25] Kazakov A.L., Orlov Sv.S., Orlov S.S., “Postroenie i issledovanie nekotorykh tochnykh reshenii nelineinogo uravneniya teploprovodnosti”, Sib. mat. zhurn., 59:3 (2018), 544–560 | DOI | MR | Zbl
[26] Kudryashov N.A., Sinelshchikov D.I., “On the integrability conditions for a family of Li$\acute e$nard-type equations”, Regular and Chaotic Dynamics, 21:5 (2016), 548–555 | DOI | MR | Zbl
[27] Kazakov A.L., Kuznetsov P.A., Lempert A.A., “Analytical solutions to the singular problem for a system of nonlinear parabolic equations of the reaction-diffusion type”, Symmetry, 12:6 (2020), 999 | DOI
[28] Kazakov A., Lempert A., “Multidimensional diffusion-wave-type solutions to the second-order evolutionary equation”, Mathematics, 12:2 (2024), 354 | DOI
[29] Kozlov V.V., “Sofya Kovalevskaya: matematik i chelovek”, Uspekhi mat. nauk, 55:6 (2000), 159–172 | DOI | MR | Zbl
[30] Kazakov A., “Solutions to nonlinear evolutionary parabolic equations of the diffusion wave type”, Symmetry, 13:5 (2021), 871 | DOI
[31] Kazakov A.L., Lempert A.A., “Tochnye resheniya tipa diffuzionnykh voln dlya nelineinogo vyrozhdayuschegosya parabolicheskogo uravneniya vtorogo poryadka”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:3 (2022), 114–128 | DOI | MR
[32] Kurant R., Uravneniya s chastnymi proizvodnymi, v. 2, Mir, M., 1964, 830 pp.
[33] Sedov L.I., Metody podobiya i razmernosti v mekhanike, Nauka, M., 1987, 432 pp. | MR
[34] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov: Opredeleniya, teoremy, formuly, Lan, M., 2003, 832 pp.
[35] Bautin N.N., Leontovich E.A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990, 488 pp.
[36] Kazakov A.L., Lempert A.A., “Diffusion-wave type solutions to the second-order evolutionary equation with power nonlinearities”, Mathematics, 10:2 (2022), 232 | DOI