The method of comparison with a model equation in the study of inclusions in vector metric spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 68-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a given multivalued mapping $F:X\rightrightarrows Y$ and a given element $\tilde{y}\in Y$, the existence of a solution $x\in X$ to the inclusion $F(x)\ni\tilde{y}$ and its estimates are studied. The sets $X$ and $Y$ are endowed with vector metrics $\mathcal{P}_X^{E_+}$ and $\mathcal{P}_Y^{M_+}$, whose values belong to cones $E_+$ and $M_+$ of a Banach space $E$ and a linear topological space $M$, respectively. The inclusion is compared with a “model” equation $f(t)=0$, where $f:E_+\to M$. It is assumed that $f$ can be written as $f(t)\equiv g(t,t)$, where the mapping $g:{E}_+\times{E}_+\to M$ orderly covers the set $\{0\}\subset M$ with respect to the first argument and is antitone with respect to the second argument and $-g(0,0)\in M_+$. It is shown that in this case the equation $f(t)=0$ has a solution $t^*\in E_+$. Further, conditions on the connection between $f(0)$ and $F(x_0)$ and between the increments of $f(t)$ for $t\in [0,t^*]$ and the increments of $F(x)$ for all $x$ in the ball of radius $t^*$ centered at $x_0$ for some $x_0$ are formulated, and it is shown that the inclusion has a solution in the ball under these conditions. The results on the operator inclusion obtained in the paper are applied to studying an integral inclusion.
Keywords: operator inclusion, existence and estimates of solutions, integral inclusion, vector metric space.
@article{TIMM_2024_30_2_a4,
     author = {E. S. Zhukovskiy and E. A. Panasenko},
     title = {The method of comparison with a model equation in the study of inclusions in vector metric spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {68--85},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a4/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
AU  - E. A. Panasenko
TI  - The method of comparison with a model equation in the study of inclusions in vector metric spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 68
EP  - 85
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a4/
LA  - ru
ID  - TIMM_2024_30_2_a4
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%A E. A. Panasenko
%T The method of comparison with a model equation in the study of inclusions in vector metric spaces
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 68-85
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a4/
%G ru
%F TIMM_2024_30_2_a4
E. S. Zhukovskiy; E. A. Panasenko. The method of comparison with a model equation in the study of inclusions in vector metric spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 68-85. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a4/

[1] Krasovskii N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Gos. izd-vo fiz.-mat. literatury, M., 1959, 211 pp.

[2] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[3] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[4] Kryazhimskii A.V., Maksimov V.I., “O sochetanii protsessov rekonstruktsii i garantiruyuschego upravleniya”, Avtomatika i telemekhanika, 2013, no. 8, 5–21 | Zbl

[5] Khlopin D.V., Chentsov A.G., “Ob odnoi zadache upravleniya s nepolnoi informatsiei: kvazistrategii i protsedury upravleniya s modelyu”, Differents. uravneniya, 41:12 (2005), 1652–1666 | MR | Zbl

[6] Piliya A.D., Fedorov V.I., “Osobennosti polya elektromagnitnoi volny v kholodnoi anizotropnoi plazme s dvumernoi neodnorodnostyu”, Zhurnal eksperiment. i teoret. fiziki, 60:1 (1971), 389–399

[7] Davydov A.A., “Osobennosti predelnykh napravlenii tipichnykh neyavnykh ODU vysshikh poryadkov”, Tr. MIAN, 236 (2002), 134–141 | Zbl

[8] Vlasenko L.A., Rutkas A.G., “O differentsialnoi igre v sisteme, opisyvaemoi neyavnym differentsialno-operatornym uravneniem”, Differents. uravneniya, 51:6 (2015), 785–795 | DOI | Zbl

[9] Kantorovich L.V., “Nekotorye dalneishie primeneniya metoda Nyutona”, Vestn. Leningrad. universiteta, 1957, no. 7, 68–103 | Zbl

[10] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp. | MR

[11] Zubelevich O., “Coincidence points of mappings in Banach spaces”, Fixed Point Theory, 21:1 (2020), 389–394 | DOI | MR | Zbl

[12] Arutyunov A.V., Zhukovskii E.S., Zhukovskii S.E., “Teorema Kantorovicha o nepodvizhnykh tochkakh v metricheskikh prostranstvakh i tochki sovpadeniya”, Tr. MIAN, 304 (2019), 68–82 | DOI | Zbl

[13] Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., “On the stability of fixed points and coincidence points of mappings in the generalized Kantorovichs theorem”, Topology Appl., 275 (2020) | DOI | MR

[14] Zhukovskii E.S., “O metode sravneniya v issledovanii uravnenii v metricheskikh prostranstvakh”, Mat. zametki, 108:5 (2020), 702–713 | DOI | MR

[15] Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., Zhukovskaya Z.T., “Kantorovich's fixed point theorem and coincidence point theorems for mappings in vector metric spaces”, Set-Valued Var. Anal., 30 (2022), 397–423 | DOI | MR | Zbl

[16] Zhukovskiy E., Panasenko E., “Extension of the Kantorovich theorem to equations in vector metric spaces: applications to functional differential equations”, Mathematics, 12:1 (2024), 64, 1–17 | DOI

[17] Perov A.I., “Mnogomernaya versiya printsipa obobschennogo szhatiya M. A. Krasnoselskogo”, Funkts. analiz i ego prilozheniya, 44:1 (2010), 83–87 | DOI | MR | Zbl

[18] Zhukovskii E.S., “O tochkakh sovpadeniya vektornykh otobrazhenii”, Izv. vuzov. Matematika, 2016, no. 10, 14–28 | Zbl

[19] Zhukovskii E.S., “O tochkakh sovpadeniya mnogoznachnykh vektornykh otobrazhenii metricheskikh prostranstv”, Mat. zametki, 100:3 (2016), 344–362 | DOI | MR | Zbl

[20] Zhukovskii E.S., “O vozmuscheniyakh vektorno nakryvayuschikh otobrazhenii i sistemakh uravnenii v metricheskikh prostranstvakh”, Sib. mat. zhurn., 57:2 (2016), 297–311 | DOI | MR | Zbl

[21] Panasenko E.A., “On operator inclusions in spaces with vector-valued metrics”, Proc. Steklov Inst. Math. (Suppl.), 323:Suppl. 1 (2023), S222–S242 | DOI | MR

[22] Fomenko T.N., Yastrebov K.S., “Metod poiska nulei funktsionalov v konicheskom metricheskom prostranstve i voprosy ego ustoichivosti”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2020, no. 2, 8–15 | Zbl

[23] Krasnoselskii M.A., Zabreiko P.P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 511 pp. | MR

[24] Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., “Coincidence points principle for mappings in partially ordered spaces”, Topology Appl., 179:1 (2015), 13–33 | DOI | MR | Zbl

[25] Zhukovskaya T.V., Filippova O.V., Shindyapin A.I., “O rasprostranenii teoremy Chaplygina na differentsialnye uravneniya neitralnogo tipa”, Vestnik rossiiskikh universitetov. Matematika, 24:127 (2019), 272–280 | DOI

[26] Zhukovskaya T.V., Zhukovskii E.S., Serova I.D., “Nekotorye voprosy analiza otobrazhenii metricheskikh i chastichno uporyadochennykh prostranstv”, Vestnik rossiiskikh universitetov. Matematika, 25:132 (2020), 345–358 | DOI | Zbl

[27] Burlakov E.O., Panasenko E.A., Serova I.D., Zhukovskiy E.S., “On order covering set-valued mappings and their applications to the investigation of implicit differential inclusions and dynamic models of economic processes”, Advances in Systems Science and Applications, 22:1 (2022), 176–191 | DOI | MR

[28] Serova I.D., “Issledovanie kraevoi zadachi dlya differentsialnogo vklyucheniya”, Vestnik rossiiskikh universitetov. Matematika, 28:144 (2023), 395–405 | DOI

[29] Borisovich Yu.G., Gelman B.D., Myshkis A.D., Obukhovskii V.V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, LIBROKOM, M., 2011, 224 pp. | MR