Sufficient optimality conditions for hybrid systems of variable dimension with intermediate constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 50-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An optimal control problem is considered for a hybrid system in which continuous motion alternates with discrete changes (switchings) of the state space and control space. The switching times are determined as a result of minimizing a functional that takes into account the costs of each switching. Sufficient conditions for the optimality of such systems under additional constraints at the switching times are obtained. The application of the optimality conditions is demonstrated using academic examples.
Keywords: hybrid systems, optimal control.
Mots-clés : variable dimension
@article{TIMM_2024_30_2_a3,
     author = {A. S. Bortakovskii},
     title = {Sufficient optimality conditions for hybrid systems of variable dimension with intermediate constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {50--67},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a3/}
}
TY  - JOUR
AU  - A. S. Bortakovskii
TI  - Sufficient optimality conditions for hybrid systems of variable dimension with intermediate constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 50
EP  - 67
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a3/
LA  - ru
ID  - TIMM_2024_30_2_a3
ER  - 
%0 Journal Article
%A A. S. Bortakovskii
%T Sufficient optimality conditions for hybrid systems of variable dimension with intermediate constraints
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 50-67
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a3/
%G ru
%F TIMM_2024_30_2_a3
A. S. Bortakovskii. Sufficient optimality conditions for hybrid systems of variable dimension with intermediate constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 50-67. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a3/

[1] Bortakovskii A.S., “Dostatochnye usloviya optimalnosti gibridnykh sistem peremennoi razmernosti”, Tr. MIAN, 308 (2020), 88–100 | DOI | MR | Zbl

[2] Bortakovskii A.S., “Necessary optimality conditions for hybrid system of variable dimension with intermediate constraints”, J. Math. Sci., 270:5 (2023), 640–653 | DOI | MR | Zbl

[3] Velichenko V.V., “Optimalnoe upravlenie sostavnymi sistemami”, Dokl. AN SSSR, 176:4 (1967), 754–756 | Zbl

[4] Barsegyan B.P., Upravlenie sostavnykh dinamicheskikh sistem i sistem s mnogotochechnymi promezhutochnymi usloviyami, Nauka, M., 2016, 230 pp.

[5] Kirillov A.N., “Dinamicheskie sistemy s peremennoi strukturoi i razmernostyu”, Izv. VUZov. Ser. Priborostroenie, 52:3 (2009), 23–28

[6] Kirichenko N.F., Sopronyuk F.A., “Minimaksnoe upravlenie v zadachakh upravleniya i nablyudeniya dlya sistem s razvetvleniem struktur”, Obozrenie prikladnoi i promyshlennoi matematiki, 2:1 (1995), 78–91 | Zbl

[7] Medvedev V.A., Rozova V.N., “Optimalnoe upravlenie stupenchatymi sistemami”, Avtomatika i telemekhanika, 1972, no. 3, 15–23 | Zbl

[8] Gurman V.I., Printsip rasshireniya v zadachakh upravleniya, Nauka, M., 1985, 288 pp.

[9] Boltyanskii V.G., “Zadacha optimizatsii so smenoi fazovogo prostranstva”, Differents. uravneniya, 1983, no. 3, 518–521 | Zbl

[10] Sussmann H.J., “A maximum principle for hybrid optimal control problems”, Proc. 38th IEEE Conf. on Decision and Control (Phoenix), v. 1, 1999, 425–430 | DOI

[11] Dmitruk A.V., Kaganovich A.M., “The hybrid maximum principle is a consequence of Pontryagin maximum principle”, Syst. Control Lett., 57:11 (2008), 964–970 | DOI | MR | Zbl

[12] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[13] Bortakovskii A.S., “Sintez optimalnykh sistem upravleniya so smenoi modelei dvizheniya”, Izv. RAN. Ser. Teoriya i sistemy upravleniya, 2019, no. 4, 57–74 | DOI

[14] Bellman P., Dinamicheskoe programmirovanie, Izd-vo inostr. lit., M., 1960, 400 pp. | MR

[15] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[16] Fedorenko R.P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978, 488 pp.

[17] Krotov V.F., Gurman V.I., Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973, 446 pp.

[18] Bortakovskii A.S., Nemychenkov G.I., “Optimalnoe v srednem upravlenie determinirovannymi pereklyuchaemymi sistemami pri nalichii diskretnykh netochnykh izmerenii”, Izv. RAN. Ser. Teoriya i sistemy upravleniya, 2019, no. 1, 52–77 | DOI | Zbl