Mots-clés : variable dimension
@article{TIMM_2024_30_2_a3,
author = {A. S. Bortakovskii},
title = {Sufficient optimality conditions for hybrid systems of variable dimension with intermediate constraints},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {50--67},
year = {2024},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a3/}
}
TY - JOUR AU - A. S. Bortakovskii TI - Sufficient optimality conditions for hybrid systems of variable dimension with intermediate constraints JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 50 EP - 67 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a3/ LA - ru ID - TIMM_2024_30_2_a3 ER -
A. S. Bortakovskii. Sufficient optimality conditions for hybrid systems of variable dimension with intermediate constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 50-67. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a3/
[1] Bortakovskii A.S., “Dostatochnye usloviya optimalnosti gibridnykh sistem peremennoi razmernosti”, Tr. MIAN, 308 (2020), 88–100 | DOI | MR | Zbl
[2] Bortakovskii A.S., “Necessary optimality conditions for hybrid system of variable dimension with intermediate constraints”, J. Math. Sci., 270:5 (2023), 640–653 | DOI | MR | Zbl
[3] Velichenko V.V., “Optimalnoe upravlenie sostavnymi sistemami”, Dokl. AN SSSR, 176:4 (1967), 754–756 | Zbl
[4] Barsegyan B.P., Upravlenie sostavnykh dinamicheskikh sistem i sistem s mnogotochechnymi promezhutochnymi usloviyami, Nauka, M., 2016, 230 pp.
[5] Kirillov A.N., “Dinamicheskie sistemy s peremennoi strukturoi i razmernostyu”, Izv. VUZov. Ser. Priborostroenie, 52:3 (2009), 23–28
[6] Kirichenko N.F., Sopronyuk F.A., “Minimaksnoe upravlenie v zadachakh upravleniya i nablyudeniya dlya sistem s razvetvleniem struktur”, Obozrenie prikladnoi i promyshlennoi matematiki, 2:1 (1995), 78–91 | Zbl
[7] Medvedev V.A., Rozova V.N., “Optimalnoe upravlenie stupenchatymi sistemami”, Avtomatika i telemekhanika, 1972, no. 3, 15–23 | Zbl
[8] Gurman V.I., Printsip rasshireniya v zadachakh upravleniya, Nauka, M., 1985, 288 pp.
[9] Boltyanskii V.G., “Zadacha optimizatsii so smenoi fazovogo prostranstva”, Differents. uravneniya, 1983, no. 3, 518–521 | Zbl
[10] Sussmann H.J., “A maximum principle for hybrid optimal control problems”, Proc. 38th IEEE Conf. on Decision and Control (Phoenix), v. 1, 1999, 425–430 | DOI
[11] Dmitruk A.V., Kaganovich A.M., “The hybrid maximum principle is a consequence of Pontryagin maximum principle”, Syst. Control Lett., 57:11 (2008), 964–970 | DOI | MR | Zbl
[12] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR
[13] Bortakovskii A.S., “Sintez optimalnykh sistem upravleniya so smenoi modelei dvizheniya”, Izv. RAN. Ser. Teoriya i sistemy upravleniya, 2019, no. 4, 57–74 | DOI
[14] Bellman P., Dinamicheskoe programmirovanie, Izd-vo inostr. lit., M., 1960, 400 pp. | MR
[15] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.
[16] Fedorenko R.P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978, 488 pp.
[17] Krotov V.F., Gurman V.I., Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973, 446 pp.
[18] Bortakovskii A.S., Nemychenkov G.I., “Optimalnoe v srednem upravlenie determinirovannymi pereklyuchaemymi sistemami pri nalichii diskretnykh netochnykh izmerenii”, Izv. RAN. Ser. Teoriya i sistemy upravleniya, 2019, no. 1, 52–77 | DOI | Zbl