@article{TIMM_2024_30_2_a2,
author = {M. S. Blizorukova and V. I. Maksimov},
title = {On modeling a solution of systems with constant delay using controlled models},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {39--49},
year = {2024},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a2/}
}
TY - JOUR AU - M. S. Blizorukova AU - V. I. Maksimov TI - On modeling a solution of systems with constant delay using controlled models JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 39 EP - 49 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a2/ LA - ru ID - TIMM_2024_30_2_a2 ER -
M. S. Blizorukova; V. I. Maksimov. On modeling a solution of systems with constant delay using controlled models. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 39-49. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a2/
[1] Osipov Yu.S., Kryazhimskii A.V., “O dinamicheskom reshenii operatornykh uravnenii”, Dokl. AN SSSR, 269:3 (1983), 552–556 | MR | Zbl
[2] Osipov Yu.S., Kryazhimskii A.V., “O modelirovanii parametrov dinamicheskoi sistemy”, Zadachi upravleniya i modelirovaniya v dinamicheskikh sistemakh, sb. statei, Izd-vo Ural. nauch. tsentra, Sverdlovsk, 1984, 47–68
[3] Kryazhimskii A.V., Maksimov V.I., Osipov Yu.S., “O modelirovanii upravleniya v dinamicheskikh sistemakh”, Prikl. matematika i mekhanika, 47:6 (1983), 883–890 | MR
[4] Kryazhimskii A.V., Osipov Yu.S., “O nailuchshem priblizhenii operatora differentsirovaniya v klasse neuprezhdayuschikh operatorov”, Mat. zametki, 37:2 (1985), 192–199 | MR | Zbl
[5] Osipov Yu.S., Kryazhimskii A.V., “Metod funktsii Lyapunova v zadache modelirovaniya dvizheniya”, Ustoichivost dvizheniya, sb. tr., Nauka, Novosibirsk, 1985, 53–56
[6] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[7] Maksimov V.I., “Pozitsionnoe modelirovanie upravlenii i nachalnykh funktsii dlya sistem Volterra”, Differents. uravneniya, 23:4 (1987), 618–629 | MR
[8] Maksimov V.I., “Chislennyi metod nakhozhdeniya priblizhennykh reshenii parabolicheskikh variatsionnykh neravenstv”, Differents. uravneniya, 24:11 (1988), 1994–2004 | MR
[9] Maksimov V., “The method of extremal shift in control problems for evolution variational inequalities under uncertainty”, Evol. Equ. Control The, 11:4 (2022), 1373–1398 | DOI | MR | Zbl
[10] Maksimov V.I., “O suschestvovanii silnykh reshenii differentsialnykh uravnenii v gilbertovom prostranstve”, Differents. uravneniya, 24:3 (1988), 618–629
[11] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, 1995, 625 pp. | MR | Zbl
[12] Banks H.T., “Approximation of nonlinear functional–differential systems”, J. Optim. Theory Appl., 29 (1979), 383–408 | DOI | MR | Zbl
[13] Kappel F., Schappaher W., “Non-linear functional differential equations and abstract integral equations”, Proc. Roy. Soc. Edinburgh, 84:1–2 (1979), 71–91 | DOI | MR | Zbl
[14] Jackiewicz Z., “The numerical solutions of Volterra functional differential equations of neutral type”, SIAM J. Numer. Analysis, 18:4 (1981), 615–626 | DOI | MR | Zbl
[15] Ito K., Kappel F., “Approximation of infinite delay and Volterra type equations”, Numer. Math., 54 (1989), 405–444 | DOI | MR | Zbl
[16] Lasiecka I., Manitius A., “Differentiability and convergence rates of approximating semigroups for retarded functional differential equations”, SIAM J. Numer. Analysis, 25:4 (1988), 883–907 | DOI | MR | Zbl
[17] Maksimov V.I., “Ob otslezhivanii traektorii dinamicheskoi sistemy”, Prikl. matematika i mekhanika, 75:6 (2011), 951–960 | MR | Zbl