@article{TIMM_2024_30_2_a17,
author = {E. N. Khailov},
title = {Bolza minimization problems for the {Lotka{\textendash}Volterra} competition model},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {259--276},
year = {2024},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a17/}
}
E. N. Khailov. Bolza minimization problems for the Lotka–Volterra competition model. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 259-276. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a17/
[1] Khailov E.N., Grigorenko N.L., Grigoreva E.V., Klimenkova A.D., Upravlyaemye sistemy Lotki — Volterry v modelirovanii mediko-biologicheskikh protsessov, MAKS Press, M., 2021, 204 pp. | DOI
[2] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.
[3] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.
[4] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhäuser, Boston, 1994, 244 pp. | DOI | MR | Zbl
[5] Schättler H., Ledzewicz U., Geometric optimal control: theory, methods and examples, Springer, NY; Heidelberg; Dordrecht; London, 2012, 640 pp. | DOI | Zbl
[6] Gabasov R., Kirillova F.M., Osobye optimalnye upravleniya, Librokom, M., 2013, 256 pp.
[7] Schättler H., Ledzewicz U., Optimal control for mathematical models of cancer therapies: an application of geometric methods, Springer, NY; Heidelberg; Dordrecht; London, 2015, 496 pp. | DOI | Zbl
[8] Martcheva M., An introduction to mathematical epidemiology, Springer, NY; Heidelberg; Dordrecht; London, 2015, 453 pp. | DOI | MR | Zbl
[9] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR
[10] Lyusternik L.A., Sobolev V.I., Elementy funktsionalnogo analiza, Gostekhizdat, M.; L., 1951, 360 pp. | MR
[11] Iosida K., Funktsionalnyi analiz, Mir, M., 1967, 624 pp. | MR
[12] Fleming U., Rishel R., Optimalnoe upravlenie determinirovannymi i stokhasticheskimi sistemami, Mir, M., 1978, 318 pp.
[13] Cesari L., Optimization — theory and applications, Springer-Verlag, NY, 1983, 542 pp. | MR | Zbl
[14] Jung E., Lenhart S., Feng Z., “Optimal control of treatments in a two-strain tuberculosis model”, Discrete Cont. Dyn.-B., 2:4 (2002), 473–482 | DOI | MR | Zbl
[15] Silva C.J., Torres D.F.M., “Optimal control for a tuberculosis model with reinfection and post-exposure interventions”, Math. Biosci., 244:2 (2013), 154–164 | DOI | MR | Zbl
[16] Mateus J.P., Rebelo P., Rosa S., Silva C.M., Torres D.F.M., “Optimal control of non-autonomous SEIRS models with vaccination and treatment”, Discrete Cont. Dyn.-S., 11:6 (2018), 1179–1199 | DOI | MR | Zbl
[17] Bonnans F., Martinon P., Giorgi D., Grélard V., Maindrault S., Tissot O., Liu J., BOCOP 2.2.1 — user guide [e-resource], August 8, 2019 URL: http://bocop.org
[18] Khailov E.N., Grigoreva E.V., Klimenkova A.D., “Optimalnye protokoly kombinirovannogo lecheniya dlya upravlyaemoi modeli rakovogo zabolevaniya krovi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:3 (2022), 222–240 | DOI | MR