Bolza minimization problems for the Lotka–Volterra competition model
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 259-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

To study the relationship between the concentrations of healthy and cancer cells in blood cancers, the Lotka–Volterra competition mathematical model is used. Terms containing the control function that specifies the concentration of the drug or the intensity of the therapy that directly kills cancer cells are added to this model. Two types of restrictions imposed on such a control function are considered: lower and upper restrictions and only a lower restriction. The result is the control Lotka–Volterra competition model with two different sets of admissible controls. For such control models, the Bolza problem is to minimize the weighted difference in the concentrations of cancer and healthy cells both at the final time of a given treatment period and throughout this entire period. For the second set of admissible controls, the integral part of the objective function additionally contains a term reflecting the cost of the treatment being performed. The use of the Pontryagin maximum principle allows us to analytically study the features of optimal controls in the considered minimization problems. For the first set of admissible controls, cases are identified and studied in detail when the optimal control is a bang-bang function, as well as cases when, along with bang-bang portions, the control may contain singular regimens. The established results are confirmed by corresponding numerical calculations performed for various parameter values and initial values of the control Lotka–Volterra competition model.
Keywords: Lotka–Volterra competition model, nonlinear control system, Bolza minimization problem, Pontryagin maximum principle, switching function, bang-bang control, singular regimen, indicator function.
@article{TIMM_2024_30_2_a17,
     author = {E. N. Khailov},
     title = {Bolza minimization problems for the {Lotka{\textendash}Volterra} competition model},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {259--276},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a17/}
}
TY  - JOUR
AU  - E. N. Khailov
TI  - Bolza minimization problems for the Lotka–Volterra competition model
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 259
EP  - 276
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a17/
LA  - ru
ID  - TIMM_2024_30_2_a17
ER  - 
%0 Journal Article
%A E. N. Khailov
%T Bolza minimization problems for the Lotka–Volterra competition model
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 259-276
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a17/
%G ru
%F TIMM_2024_30_2_a17
E. N. Khailov. Bolza minimization problems for the Lotka–Volterra competition model. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 259-276. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a17/

[1] Khailov E.N., Grigorenko N.L., Grigoreva E.V., Klimenkova A.D., Upravlyaemye sistemy Lotki — Volterry v modelirovanii mediko-biologicheskikh protsessov, MAKS Press, M., 2021, 204 pp. | DOI

[2] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[3] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[4] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhäuser, Boston, 1994, 244 pp. | DOI | MR | Zbl

[5] Schättler H., Ledzewicz U., Geometric optimal control: theory, methods and examples, Springer, NY; Heidelberg; Dordrecht; London, 2012, 640 pp. | DOI | Zbl

[6] Gabasov R., Kirillova F.M., Osobye optimalnye upravleniya, Librokom, M., 2013, 256 pp.

[7] Schättler H., Ledzewicz U., Optimal control for mathematical models of cancer therapies: an application of geometric methods, Springer, NY; Heidelberg; Dordrecht; London, 2015, 496 pp. | DOI | Zbl

[8] Martcheva M., An introduction to mathematical epidemiology, Springer, NY; Heidelberg; Dordrecht; London, 2015, 453 pp. | DOI | MR | Zbl

[9] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR

[10] Lyusternik L.A., Sobolev V.I., Elementy funktsionalnogo analiza, Gostekhizdat, M.; L., 1951, 360 pp. | MR

[11] Iosida K., Funktsionalnyi analiz, Mir, M., 1967, 624 pp. | MR

[12] Fleming U., Rishel R., Optimalnoe upravlenie determinirovannymi i stokhasticheskimi sistemami, Mir, M., 1978, 318 pp.

[13] Cesari L., Optimization — theory and applications, Springer-Verlag, NY, 1983, 542 pp. | MR | Zbl

[14] Jung E., Lenhart S., Feng Z., “Optimal control of treatments in a two-strain tuberculosis model”, Discrete Cont. Dyn.-B., 2:4 (2002), 473–482 | DOI | MR | Zbl

[15] Silva C.J., Torres D.F.M., “Optimal control for a tuberculosis model with reinfection and post-exposure interventions”, Math. Biosci., 244:2 (2013), 154–164 | DOI | MR | Zbl

[16] Mateus J.P., Rebelo P., Rosa S., Silva C.M., Torres D.F.M., “Optimal control of non-autonomous SEIRS models with vaccination and treatment”, Discrete Cont. Dyn.-S., 11:6 (2018), 1179–1199 | DOI | MR | Zbl

[17] Bonnans F., Martinon P., Giorgi D., Grélard V., Maindrault S., Tissot O., Liu J., BOCOP 2.2.1 — user guide [e-resource], August 8, 2019 URL: http://bocop.org

[18] Khailov E.N., Grigoreva E.V., Klimenkova A.D., “Optimalnye protokoly kombinirovannogo lecheniya dlya upravlyaemoi modeli rakovogo zabolevaniya krovi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:3 (2022), 222–240 | DOI | MR