Integro-differential equations of Gerasimov type with sectorial operators
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 243-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The issues of existence and uniqueness of a solution to the Cauchy problem are studied for a linear equation in a Banach space with a closed operator at the unknown function that is resolved with respect to a first-order integro-differential operator of the Gerasimov type. The properties of resolving families of operators of the homogeneous equations are investigated. It is shown that sectoriality, i.e., belonging to the class of operators $\mathcal A_K$ introduced here, is a necessary and sufficient condition for the existence of an analytical resolving family of operators in a sector. A theorem on the perturbation of operators of the class $\mathcal A_K$ is obtained, and two versions of the theorem on the existence and uniqueness of a solution to a linear inhomogeneous equation are proved. Abstract results are used to study initial–boundary value problems for an equation with the Prabhakar time derivative and for a system of partial differential equations with Gerasimov–Caputo time derivatives of different orders.
Keywords: integro-differential equation, Gerasimov–Caputo derivative, Cauchy problem, sectorial operator, resolving family of operators, initial–boundary value problem.
@article{TIMM_2024_30_2_a16,
     author = {V. E. Fedorov and A. D. Godova},
     title = {Integro-differential equations of {Gerasimov} type with sectorial operators},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {243--258},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a16/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - A. D. Godova
TI  - Integro-differential equations of Gerasimov type with sectorial operators
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 243
EP  - 258
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a16/
LA  - ru
ID  - TIMM_2024_30_2_a16
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A A. D. Godova
%T Integro-differential equations of Gerasimov type with sectorial operators
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 243-258
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a16/
%G ru
%F TIMM_2024_30_2_a16
V. E. Fedorov; A. D. Godova. Integro-differential equations of Gerasimov type with sectorial operators. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 243-258. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a16/

[1] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.

[2] Nakhushev A.M., Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995, 301 pp.

[3] Nakhushev A.M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[4] Pskhu A.V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[5] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier Science Publ., Amsterdam, 2006, 540 pp. | MR | Zbl

[6] Uchaikin V.V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 512 pp.

[7] Tarasov V.E., Fractional dynamics: Applications of fractional calculus to dynamics of particles, fields and media, Springer, NY, 2011, 505 pp. | MR

[8] Da Prato G., Iannelli M., “Linear integro-differential equations in Banach spaces”, Rendiconti del Seminario Matematico della Università di Padova, 62 (1980), 207–219 | MR | Zbl

[9] Prüss J., Evolutionary integral equations and applications, Springer, Basel, 1993, 366 pp. | DOI | MR

[10] Kostić M., Abstract Volterra integro-differential equations, CRC Press, Boca Raton, 2015, 484 pp. | DOI | MR | Zbl

[11] Caputo M., Fabrizio M., “A new definition of fractional derivative without singular kernel”, Progress in Fractional Differentiation and Applications, 1:2 (2015), 73–85 | DOI

[12] Atangana A., Baleanu D., “New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model”, Thermal Science, 20 (2016), 763–769 | DOI

[13] Fedorov V.E., Godova A.D., Kien B.T., “Integro-differential equations with bounded operators in Banach spaces”, Bulletin Karaganda Univ. Math. ser., 2022, no. 2 (106), 93–107 | DOI

[14] Fedorov V.E., Godova A.D., “Integro-differentsialnye uravneniya v banakhovykh prostranstvakh i analiticheskie razreshayuschie semeistva operatorov”, Sovrem. matematika. Fundament. napravleniya, 69:1 (2023), 166–184 | DOI | MR

[15] Arendt W., Batty C.J.K., Hieber M., Neubrander F., Vector-valued Laplace transforms and Cauchy problems, Springer, Basel, 2011, 539 pp. | DOI | MR

[16] Pazy A., Semigroups and linear operators and applications to partial differential equations, Springer, NY, 1983, 279 pp. | DOI | MR | Zbl

[17] Bajlekova E.G., Fractional evolution equations in Banach spaces, PhD thesis, Eindhoven University of Technology, Eindhoven, 2001, 107 pp. | MR | Zbl

[18] Fedorov V.E., Filin N.V., “On strongly continuous resolving families of operators for fractional distributed order equations”, Fractal and Fractional, 5:1 (2021), 20, 14 pp. | DOI | Zbl

[19] Sitnik S.M., Fedorov V.E., Filin N.V., Polunin V.A., “On the solvability of equations with a distributed fractional derivative given by the Stieltjes integral”, Mathematics, 10:16 (2022), 2979, 20 pp. | DOI | MR

[20] Fedorov V.E., Plekhanova M.V., Izhberdeeva E.M., “Analytic resolving families for equations with the Dzhrbashyan–Nersesyan fractional derivative”, Fractal and Fractional, 6:10 (2022), 541, 16 pp. | DOI

[21] Boiko K.V., “Lineinye i kvazilineinye uravneniya s neskolkimi proizvodnymi Gerasimova — Kaputo”, Chelyab. fiz.-mat. zhurn., 9:1 (2024), 5–22 | DOI

[22] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR

[23] Prabhakar T.R., “A singular integral equation with a generalized Mittag–Leffler function in the kernel”, Yokohama Math. J., 19 (1971), 7–15 | MR | Zbl

[24] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980, 664 pp.